中值定理如何构建辅助函数

中值定理如何构建辅助函数

作者:小海考研人

很多同学看到中值定理就犯怵,确实证明题一直是学生的软肋,并且 20 年数三考了一道中值定理题,是比较有难度的,想拿满分很难,如果有兴趣的同学…可以等学长有时间会进行解析,尽量通俗易懂不劝退。

但是我们不能因为中值定理难就放弃,想考高分,我们依然要迎难而上。

今天这篇重点讲一下利用罗尔定理、费马定理可解决的一类中值问题,如何构建辅助函数。即证明存在 ξ ∈ ( a , b ) , \xi \in(a, b), ξ(a,b), 使得:
H ( ξ , f ( ξ ) , f ′ ( ξ ) ) = 0 H\left(\xi, f(\xi), f^{\prime}(\xi)\right)=0 H(ξ,f(ξ),f(ξ))=0

主要思路参考张宇十八讲内容,因为同学问的较多,所以写出来供大家参考。

这类题目难点有两个:一是如何构造辅助函数;二是如何验证两端点值相等。请考生熟悉以下推导原理及思想并记忆本结论,对后续处理此类问题会有很大帮助。

待证结论如果是这样:证明存在 ξ ∈ ( a , b ) , \xi \in(a, b), ξ(a,b), 使得 f ′ ( ξ ) + g ( ξ ) f ( ξ ) = 0 , f^{\prime}(\xi)+g(\xi) f(\xi)=0, f(ξ)+g(ξ)f(ξ)=0, 如何构造辅助函数呢?

首先把 ξ \xi ξ 改为 x x x,则有 f ′ ( x ) + g ( x ) f ( x ) = 0 f^{\prime}(x)+g(x) f(x)=0 f(x)+g(x)f(x)=0,两端同乘 e ∫ g ( x ) d x \mathrm{e}^{\int g(x) \mathrm{d} x} eg(x)dx,其中 ∫ g ( x ) d x \int g(x) \mathrm{d} x g(x)dx g ( x ) g(x) g(x) 的一个原函数,于是便有 f ′ ( x ) e ∫ g ( x ) d x + e ∫ g ( x ) d x g ( x ) f ( x ) = 0 f^{\prime}(x) \mathrm{e}^{\int g(x) d x}+\mathrm{e}^{\int g(x) d x} g(x) f(x)=0 f(x)eg(x)dx+eg(x)dxg(x)f(x)=0,等式左端显然此时就是 f ( x ) e ∫ g ( x ) d x f(x) \mathrm{e}^{\int g(x) d x} f(x)eg(x)dx 的一阶导数 , , , 故这类问题的辅助函数便可取 F ( x ) = f ( x ) e ∫ s ( x ) d x F(x)=f(x) \mathrm{e}^{\int s(x) \mathrm{d} x} F(x)=f(x)es(x)dx ,举例来说,

f ′ ′ ( x ) + g ( x ) f ′ ( x ) = 0 ⇒ F ( x ) = f ′ ( x ) e ∫ g ( x ) d x f^{\prime \prime}(x)+g(x) f^{\prime}(x)=0 \Rightarrow F(x)=f^{\prime}(x) \mathrm{e}^{\int g(x) \mathrm{d} x} f(x)+g(x)f(x)=0F(x)=f(x)eg(x)dx

f ( x ) + g ( x ) ∫ 0 x f ( t ) d t = 0 ⇒ F ( x ) = ∫ 0 x f ( t ) d t ⋅ e ∫ g ( x ) d x f(x)+g(x) \int_{0}^{x} f(t) \mathrm{d} t=0 \Rightarrow F(x)=\int_{0}^{x} f(t) \mathrm{d} t \cdot \mathrm{e}^{\int g(x) \mathrm{d} x} f(x)+g(x)0xf(t)dt=0F(x)=0xf(t)dteg(x)dx

f ′ ( x ) + g ( x ) [ f ( x ) − 1 ] = 0 ⇒ F ( x ) = [ f ( x ) − 1 ] ⋅ e ∫ g ( x ) d x f^{\prime}(x)+g(x)[f(x)-1]=0 \Rightarrow F(x)=[f(x)-1] \cdot \mathrm{e}^{\int g(x) \mathrm{d} x} f(x)+g(x)[f(x)1]=0F(x)=[f(x)1]eg(x)dx

再来看第二个难点,如何验证端点值相等?事实上,此类问题的辅助函数往往都是带有 e ∫ g ( x ) d x \mathrm{e}^{\int g(x) \mathrm{d} x} eg(x)dx这一部分,于是想找 F ( x ) = f ( x ) e ∫ s ( x ) d x F(x)=f(x) \mathrm{e}^{\int s(x) \mathrm{d} x} F(x)=f(x)es(x)dx函数值相等的两个不同点,往往转化为在给定区间内找 F ( x ) F(x) F(x) 两个不同的零点,这样就有 F ( x 1 ) = F ( x 2 ) = 0 F\left(x_{1}\right)=F\left(x_{2}\right)=0 F(x1)=F(x2)=0,进而可对其使用罗尔定理。

  • 2
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值