图神经网络(三)----结点分类问题

本文详述了作者在图神经网络应用于节点分类问题上的研究,包括对多个相关Papers的解读,如Bengio的基准框架和N-GCN的多尺度图卷积。还列举了一系列关于节点分类的博客资源,并提到了一些用于节点分类的图算法工具包,如StellarGraph、NetworkX和PyTorch Geometric。
摘要由CSDN通过智能技术生成

  本篇文章将逐步记录自己针对图神经网络处理结点分类的相关Papers。

一、Paers

1、时间:2020年3月
  Benchmarking Graph Neural Networks【Paper】【Code
 【导读】Bengio等人提出一个图神经网络的基准框架。
2、 时间:2020年3月
  N-GCN: Multi-scale Graph Convolution for Semi-supervised Node Classification【Paper】【Code】

二、博客

1、Node Classification by Graph Convolutional Network
2、A Brief Survey of Node Classification with Graph Neural Networks
3、

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值