图神经网络基准测试(Benchmarking Graph Neural Networks)项目指南
benchmarking-gnns 项目地址: https://gitcode.com/gh_mirrors/be/benchmarking-gnns
项目概述
本项目来源于graphdeeplearning/benchmarking-gnns,旨在为图神经网络(GNNs)提供一个全面的基准测试环境。它支持多种数据集和框架版本,帮助研究者和开发者评估其图深度学习模型的性能。当前项目基于DGL库的0.6.1及以上版本,并且提供了详尽的实验报告和技术文档。
目录结构及介绍
基准测试项目采用清晰的组织结构,便于开发者快速定位所需资源:
configs
: 包含了用于设置实验环境的配置文件,如CPU和GPU的不同运行环境。data
: 存放各种图形数据集,是进行图神经网络训练和测试的数据来源。docs
: 文档资料,可能包括项目介绍、API参考等。layers
: 定义自定义的图神经网络层。nets
: 实现具体的图神经网络模型架构,比如MP-GCN、WL-GNN等。scripts
: 启动脚本和辅助工具,用于执行不同任务,如数据下载、模型训练等。train
: 训练相关代码,通常包含模型训练的具体逻辑。utils
: 辅助函数集合,用于数据预处理、模型评估等通用功能。visualization
: 可视化工具或代码,用于展示结果或模型行为。.gitignore
,LICENSE
,README.md
: 分别是Git忽略文件、软件许可证和项目简介。- 环境配置文件(
environment_cpu.yml
,environment_gpu.yml
): 针对CPU和GPU环境的依赖项配置。
项目启动文件介绍
- 主入口脚本往往位于
scripts
目录下,或直接在根目录有main_*.py
文件,如main_SBMs_node_classification.py
。这些脚本提供了一个简单的命令行接口来运行特定的实验,如节点分类任务在SBM图上的应用。 - Jupyter Notebooks(如
main_COLLAB_edge_classification.ipynb
)也是常用启动点,适合逐步探索和调试。
项目的配置文件介绍
配置文件主要存在于configs
目录中,通过YAML格式存储:
- 环境配置:
environment_cpu.yml
和environment_gpu.yml
分别针对CPU和GPU环境设定必要的Python包及其版本。 - 实验配置:项目内可能还有专门的配置文件,用于控制每个实验的细节,如数据路径、模型参数、优化器设置等。它们允许用户微调实验而无需修改核心代码。
使用指引简述
- 安装: 根据提供的环境配置文件,设置相应的Python环境。
- 下载数据: 按照文档指示下载并准备数据集。
- 配置: 调整配置文件以匹配你的实验需求。
- 运行: 使用指定的脚本或Notebook开始实验,确保正确指向配置文件和数据路径。
通过遵循上述指导,您可以有效地利用此项目来评估和比较不同的图神经网络模型性能。记得查阅项目README.md
获取最新信息和更详细的步骤。
benchmarking-gnns 项目地址: https://gitcode.com/gh_mirrors/be/benchmarking-gnns