图神经网络基准测试(Benchmarking Graph Neural Networks)项目指南

图神经网络基准测试(Benchmarking Graph Neural Networks)项目指南

benchmarking-gnns benchmarking-gnns 项目地址: https://gitcode.com/gh_mirrors/be/benchmarking-gnns

项目概述

本项目来源于graphdeeplearning/benchmarking-gnns,旨在为图神经网络(GNNs)提供一个全面的基准测试环境。它支持多种数据集和框架版本,帮助研究者和开发者评估其图深度学习模型的性能。当前项目基于DGL库的0.6.1及以上版本,并且提供了详尽的实验报告和技术文档。

目录结构及介绍

基准测试项目采用清晰的组织结构,便于开发者快速定位所需资源:

  • configs: 包含了用于设置实验环境的配置文件,如CPU和GPU的不同运行环境。
  • data: 存放各种图形数据集,是进行图神经网络训练和测试的数据来源。
  • docs: 文档资料,可能包括项目介绍、API参考等。
  • layers: 定义自定义的图神经网络层。
  • nets: 实现具体的图神经网络模型架构,比如MP-GCN、WL-GNN等。
  • scripts: 启动脚本和辅助工具,用于执行不同任务,如数据下载、模型训练等。
  • train: 训练相关代码,通常包含模型训练的具体逻辑。
  • utils: 辅助函数集合,用于数据预处理、模型评估等通用功能。
  • visualization: 可视化工具或代码,用于展示结果或模型行为。
  • .gitignore, LICENSE, README.md: 分别是Git忽略文件、软件许可证和项目简介。
  • 环境配置文件(environment_cpu.yml, environment_gpu.yml): 针对CPU和GPU环境的依赖项配置。

项目启动文件介绍

  • 主入口脚本往往位于scripts目录下,或直接在根目录有main_*.py文件,如main_SBMs_node_classification.py。这些脚本提供了一个简单的命令行接口来运行特定的实验,如节点分类任务在SBM图上的应用。
  • Jupyter Notebooks(如main_COLLAB_edge_classification.ipynb)也是常用启动点,适合逐步探索和调试。

项目的配置文件介绍

配置文件主要存在于configs目录中,通过YAML格式存储:

  • 环境配置environment_cpu.ymlenvironment_gpu.yml分别针对CPU和GPU环境设定必要的Python包及其版本。
  • 实验配置:项目内可能还有专门的配置文件,用于控制每个实验的细节,如数据路径、模型参数、优化器设置等。它们允许用户微调实验而无需修改核心代码。

使用指引简述

  1. 安装: 根据提供的环境配置文件,设置相应的Python环境。
  2. 下载数据: 按照文档指示下载并准备数据集。
  3. 配置: 调整配置文件以匹配你的实验需求。
  4. 运行: 使用指定的脚本或Notebook开始实验,确保正确指向配置文件和数据路径。

通过遵循上述指导,您可以有效地利用此项目来评估和比较不同的图神经网络模型性能。记得查阅项目README.md获取最新信息和更详细的步骤。

benchmarking-gnns benchmarking-gnns 项目地址: https://gitcode.com/gh_mirrors/be/benchmarking-gnns

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

梅俐筝

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值