一、什么是数据增强
在机器学习训练过程中,经常会遇到数据量不足(即样本不够全面)从而导致训练出来的的模型泛华性能差的问题。此时通过人为的对数据进行扩充来生成更多种类(更加符合实际情况)的数据的技术就是数据增强。
数据增强的作用:
数据增强可以丰富训练数据的分布、提高模型的泛华性能和鲁棒性、防止过度拟合等作用。
二、数据增强分类
有监督数据增强:
(1)单样本数据增强
几何变换类:翻转,旋转,裁剪,变形,缩放等;
颜色变换类:噪声、模糊、颜色变换、擦除、填充等。
(2)多样本数据增强
SMOTE、SamplePairing、mixup 等。
无监督数据增强:
GAN、Autoaugmentation 等。
三、数据增强的实现
1、AutoAugment:
2、
四、参考文献
【1】深度学习中有哪些数据增强方法?
【2】如何使用 Google 的 AutoAugment 改进图像分类器
【3】Random Erasing:数据增强之随机擦除
【4】数据增强及实现