图像处理--数据增强

一、什么是数据增强
在机器学习训练过程中,经常会遇到数据量不足(即样本不够全面)从而导致训练出来的的模型泛华性能差的问题。此时通过人为的对数据进行扩充来生成更多种类(更加符合实际情况)的数据的技术就是数据增强。

数据增强的作用:
数据增强可以丰富训练数据的分布、提高模型的泛华性能和鲁棒性、防止过度拟合等作用。

二、数据增强分类
有监督数据增强:
(1)单样本数据增强
几何变换类:翻转,旋转,裁剪,变形,缩放等;
颜色变换类:噪声、模糊、颜色变换、擦除、填充等。
(2)多样本数据增强
SMOTE、SamplePairing、mixup 等。

无监督数据增强:
GAN、Autoaugmentation 等。

三、数据增强的实现
1、AutoAugment:
2、

四、参考文献
【1】深度学习中有哪些数据增强方法?
【2】如何使用 Google 的 AutoAugment 改进图像分类器
【3】Random Erasing:数据增强之随机擦除
【4】数据增强及实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值