线性回归和正则化(Regularization)

线性回归是数据建模的基础,通过最小二乘法求解参数。然而,普通线性回归易发生过拟合。为解决此问题,引入正则化,包括岭回归(L2范数惩罚)和Lasso回归(L1范数惩罚)。岭回归使参数系数收缩,Lasso则可使部分系数为0,从而达到特征选择的效果。
摘要由CSDN通过智能技术生成



1.线性回归介绍


X指训练数据的feature,beta指待估计得参数。

详细见http://zh.wikipedia.org/wiki/%E4%B8%80%E8%88%AC%E7%BA%BF%E6%80%A7%E6%A8%A1%E5%9E%8B

使用最小二乘法拟合的普通线性回归是数据建模的基本方法。


令最小二乘项的偏导为0(为0时RSS项最小),求Beta估计值,得到最小二乘的向量形式。



最小二乘其实就是找出一组参数beta使得训练数据到拟合出的数据的欧式距离最小。如下图所示,使所有红点(训练数据)到平面的距离之和最小。



图来源(ESL p45)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值