1.线性回归介绍
X指训练数据的feature,beta指待估计得参数。
详细见http://zh.wikipedia.org/wiki/%E4%B8%80%E8%88%AC%E7%BA%BF%E6%80%A7%E6%A8%A1%E5%9E%8B
使用最小二乘法拟合的普通线性回归是数据建模的基本方法。
令最小二乘项的偏导为0(为0时RSS项最小),求Beta估计值,得到最小二乘的向量形式。
最小二乘其实就是找出一组参数beta使得训练数据到拟合出的数据的欧式距离最小。如下图所示,使所有红点(训练数据)到平面的距离之和最小。
图来源(ESL p45)