最小生成树:一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边。
最小生成树可以用kruskal(克鲁斯卡尔)算法或prim(普里姆)算法求出;
一:kruskal(克鲁斯卡尔)
将图中的每条边按从小到大排个序。然后按这个顺序建个树就是最小生成树。
kruskal主要是建树过程中不能出现环,如果加入当前边,会形成环,就放弃这个边,继续向下建树。直到这个树
有n-1条边即可(n个点形成的树一定有n-1条边);
我们可以用并查集来判断是否成环:
代码如下(复杂度为:Elogn)
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define mmset(a,b) memset(a,b,sizeof(a))
using namespace std;
const int N = 1005;
struct node
{
int x,y,w;
};
int father[N];
node edges[N*N];
int n,m, index = 1;
bool cmp(node a, node b)
{
return a.w < b.w;
}
void init()
{
for(int i = 1; i <= n; i++)
{
father[i] = i;
}
}
int find(int u)
{
if(u != father[u])
{
father[u] = find(father[u]);
}
return father[u];
}
void marge(int v,int u)
{
father[v] = u;
}
int main()
{
scanf("%d %d",&n,&m);
init();
index = 1;
for(int i = 1; i <= m; i++)
{
int x,y,w;
scanf("%d %d %d",&x,&y,&w);
edges[index].x = x, edges[index].y = y, edges[index++].w = w;
}
sort(edges + 1, edges + index, cmp);
int num = 1,res = 0;
for(int i = 1; i <= n-1; )
{
int x = edges[num].x, y = edges[num].y;
int mx = find(x), my = find(y);
if(mx != my) //用并查集来判断是否成环。
{
marge(mx,my);
res += edges[num].w;
i++; //如果不成环,这个树的边树就+1
}
num++;
}
printf("%d\n",res);
return 0;
}