无意中发现了一个巨牛的人工智能教程,忍不住分享一下给大家。教程不仅是零基础,通俗易懂,
而且非常风趣幽默,像看小说一样!觉得太牛了,所以分享给大家。点这里可以跳转到教程。人工智能教程
准备一张图片,pytorch可以方便地实现用预训练的网络提取特征。
下面我们用pytorch提取图片采用预训练网络resnet50,提取图片特征。
# -*- coding: utf-8 -*-
import os.path
import torch
import torch.nn as nn
from torchvision import models, transforms
from torch.autograd import Variable
import numpy as np
from PIL import Image
import warnings
warnings.filterwarnings("ignore")
features_dir = 'F:/img_spam/test/features/'
img_path = "F:/img_spam/test/10064004487036357500320010026498.jpg"
file_name = img_path.split('/')[-1]
feature_path = os.path.join(features_dir, file_name + '.txt')
print(feature_path)
transform1 = transforms.Compose([
transforms.Scale(256),
transforms.CenterCrop(224),
transforms.ToTensor()]
)
img = Image.open(img_path)
img1 = transform1(img)
print(img1)
resnet50_feature_extractor = models.resnet50(pretrained = True)
resnet50_feature_extractor.fc = nn.Linear(2048, 2048)
torch.nn.init.eye(resnet50_feature_extractor.fc.weight)
for param in resnet50_feature_extractor.parameters():
param.requires_grad = False
x = Variable(torch.unsqueeze(img1, dim=0).float(), requires_grad=False)
print(x)
y = resnet50_feature_extractor(x)
y = y.data.numpy()
print(y)
np.savetxt(feature_path, y, delimiter=',')
y_ = np.loadtxt(feature_path, delimiter=',').reshape(1, 2048)
print(y_)
运行结果:
E:\laidefa\python.exe C:/Users/xiaohu/PycharmProjects/深度学习/pytorch实战/resNet提取图片特征.py
F:/img_spam/test/features/10064004487036357500320010026498.jpg.txt
tensor([[[ 0.9961, 0.9961, 0.9961, ..., 0.9961, 0.9961, 0.9961],
[ 0.9961, 0.9961, 0.9961, ..., 0.9961, 0.9961, 0.9961],
[ 0.9961, 0.9961, 0.9961, ..., 0.9961, 0.9961, 0.9961],
...,
[ 0.9059, 0.9059, 0.8902, ..., 0.9020, 0.9569, 0.9412],
[ 0.9255, 0.9098, 0.9255, ..., 0.8667, 0.9294, 0.9216],
[ 0.9059, 0.9098, 0.9059, ..., 0.9216, 0.9529, 0.9412]],
[[ 0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000],
[ 0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000],
[ 0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000],
...,
[ 0.3412, 0.1137, 0.3255, ..., 0.3608, 0.5176, 0.1569],
[ 0.4667, 0.2824, 0.4314, ..., 0.3020, 0.5216, 0.1490],
[ 0.3137, 0.0667, 0.2863, ..., 0.2510, 0.3020, 0.0784]],
[[ 0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000],
[ 0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000],
[ 0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000],
...,
[ 0.0627, 0.0275, 0.0627, ..., 0.0980, 0.1294, 0.0471],
[ 0.1098, 0.0941, 0.1255, ..., 0.0627, 0.1098, 0.0275],
[ 0.0588, 0.0353, 0.0667, ..., 0.0941, 0.0902, 0.0392]]])
tensor([[[[ 0.9961, 0.9961, 0.9961, ..., 0.9961, 0.9961, 0.9961],
[ 0.9961, 0.9961, 0.9961, ..., 0.9961, 0.9961, 0.9961],
[ 0.9961, 0.9961, 0.9961, ..., 0.9961, 0.9961, 0.9961],
...,
[ 0.9059, 0.9059, 0.8902, ..., 0.9020, 0.9569, 0.9412],
[ 0.9255, 0.9098, 0.9255, ..., 0.8667, 0.9294, 0.9216],
[ 0.9059, 0.9098, 0.9059, ..., 0.9216, 0.9529, 0.9412]],
[[ 0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000],
[ 0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000],
[ 0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000],
...,
[ 0.3412, 0.1137, 0.3255, ..., 0.3608, 0.5176, 0.1569],
[ 0.4667, 0.2824, 0.4314, ..., 0.3020, 0.5216, 0.1490],
[ 0.3137, 0.0667, 0.2863, ..., 0.2510, 0.3020, 0.0784]],
[[ 0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000],
[ 0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000],
[ 0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000],
...,
[ 0.0627, 0.0275, 0.0627, ..., 0.0980, 0.1294, 0.0471],
[ 0.1098, 0.0941, 0.1255, ..., 0.0627, 0.1098, 0.0275],
[ 0.0588, 0.0353, 0.0667, ..., 0.0941, 0.0902, 0.0392]]]])
[[0.36967766 0.5629435 0.49159744 ... 0.33528978 0.42739153 0.3224204 ]]
[[0.36967766 0.56294352 0.49159744 ... 0.33528978 0.42739153 0.32242039]]
Process finished with exit code 0