1、下载anaconda
https://repo.anaconda.com/archive/index.html
选择下载 Anaconda3-2019.10-Linux-x86_64.sh
2、安装linux 工具4个,上传,下载,解压,打包
yum install zip
yum install unzip
yum install lrzsz
Yum install wget
3、rz Anaconda3-2019.10-Linux-x86_64.sh
4、安装 bash Anaconda3-2019.10-Linux-x86_64.sh
一直按回车,直到出现yes,按yes,然后继续按回车,默认安装路径,初始化提升 也按yes.然后就安装成功了。
修改~/.bashrc
export PATH=/root/anaconda3/bin:$PATH
source ~/.bashrc
5、接下来配置清华镜像源。
cd ~
mkdir ~/.pip
cd ~/.pip
vim pip.conf
写入如下内容:
[global]
timeout = 6000
index-url = https://pypi.tuna.tsinghua.edu.cn/simple
trusted-host = pypi.tuna.tsinghua.edu.cn
换源成功。重新进入AI算法服务器
6、接下来 安装 python3.7.5环境以及安装依赖包,默认是3.7.4版本 ,这里我们需要安装python3.7.5
创建环境 conda create -n model python==3.7.5
激活环境 conda activate model
退出环境 conda deactivate
安装成功!
7、接下来进入python3.7.5环境,安装所需依赖包
先激活环境 conda activate model
进入model 环境之后,安装依赖包。用pip 命令安装即可。
pip install requests
pip install gunicorn==20.0.4
pip install uvicorn==0.11.3
pip install uvloop==0.14.0
pip install fastapi==0.52.0
pip install xgboost==0.90
pip install xlrd==1.2.0
pip install scikit-learn==0.22.1
pip install joblib==0.14.1
pip install pandas==0.25.3
pip install tensorflow==2.0.0
pip install keras==2.3.1
pip install lightgbm==2.3.1
pip install pillow==8.0.1
pip install opencv-python==4.4.0.46
pip install uuid
pip install kafka
pip install kafka_python
pip install pymysql
pip install psycopg2-binary
pip install apscheduler
8.也可以直接克隆 之前的虚拟环境。
conda env create -f model.yml
model.yml 内容如下:
name: model
channels:
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- ca-certificates=2022.3.29
- certifi=2021.10.8
- libedit=3.1.20210910
- libffi=3.2.1
- libgcc-ng=9.1.0
- libstdcxx-ng=9.1.0
- ncurses=6.3
- openssl=1.1.1n
- pip=21.2.2
- python=3.7.5
- readline=7.0
- setuptools=61.2.0
- sqlite=3.33.0
- tk=8.6.11
- wheel=0.37.1
- xz=5.2.5
- zlib=1.2.12
- pip:
- absl-py==1.0.0
- apscheduler==3.9.1
- astor==0.8.1
- backports-zoneinfo==0.2.1
- cached-property==1.5.2
- cachetools==4.2.4
- charset-normalizer==2.0.12
- click==7.1.2
- cython==0.29.32
- dbutils==3.0.2
- fastapi==0.52.0
- gast==0.2.2
- google-auth==1.35.0
- google-auth-oauthlib==0.4.6
- google-pasta==0.2.0
- greenlet==1.1.2
- grpcio==1.45.0
- gunicorn==20.0.4
- h11==0.9.0
- h2==2.6.2
- h5py==3.6.0
- hpack==3.0.0
- httptools==0.1.2
- hyper==0.7.0
- hyperframe==3.2.0
- idna==3.3
- importlib-metadata==4.11.3
- joblib==0.14.1
- kafka==1.3.5
- kafka-python==2.0.2
- keras==2.3.1
- keras-applications==1.0.8
- keras-preprocessing==1.1.2
- ksql==0.10.2
- lightgbm==2.3.1
- markdown==3.3.6
- numpy==1.21.6
- oauthlib==3.2.0
- opencv-python==4.4.0.46
- opt-einsum==3.3.0
- pandas==0.25.3
- pillow==8.0.1
- protobuf==3.20.1
- psycopg2-binary==2.9.3
- pyasn1==0.4.8
- pyasn1-modules==0.2.8
- pydantic==1.9.0
- pymysql==1.0.2
- python-dateutil==2.8.2
- pytz==2022.1
- pytz-deprecation-shim==0.1.0.post0
- pyyaml==6.0
- requests==2.27.1
- requests-oauthlib==1.3.1
- rsa==4.8
- scikit-learn==0.22.1
- scipy==1.7.3
- six==1.16.0
- sqlalchemy==1.4.39
- starlette==0.13.2
- tensorboard==2.0.2
- tensorflow==2.0.0
- tensorflow-estimator==2.0.1
- termcolor==1.1.0
- typing-extensions==4.2.0
- tzdata==2022.1
- tzlocal==4.2
- urllib3==1.26.9
- uuid==1.30
- uvicorn==0.11.3
- uvloop==0.14.0
- websockets==8.1
- werkzeug==2.1.1
- wrapt==1.14.0
- xgboost==0.90
- xlrd==1.2.0
- zipp==3.8.0
prefix: /root/anaconda3/envs/model