# 【python 走进NLP】两种高效过滤敏感词算法--DFA算法和AC自动机算法

116 篇文章 28 订阅

1、DFA过滤敏感词算法

python 实现DFA算法：

# -*- coding:utf-8 -*-

import time
time1=time.time()

# DFA算法
class DFAFilter():
def __init__(self):
self.keyword_chains = {}
self.delimit = '\x00'

keyword = keyword.lower()
chars = keyword.strip()
if not chars:
return
level = self.keyword_chains
for i in range(len(chars)):
if chars[i] in level:
level = level[chars[i]]
else:
if not isinstance(level, dict):
break
for j in range(i, len(chars)):
level[chars[j]] = {}
last_level, last_char = level, chars[j]
level = level[chars[j]]
last_level[last_char] = {self.delimit: 0}
break
if i == len(chars) - 1:
level[self.delimit] = 0

def parse(self, path):
with open(path,encoding='utf-8') as f:
for keyword in f:

def filter(self, message, repl="*"):
message = message.lower()
ret = []
start = 0
while start < len(message):
level = self.keyword_chains
step_ins = 0
for char in message[start:]:
if char in level:
step_ins += 1
if self.delimit not in level[char]:
level = level[char]
else:
ret.append(repl * step_ins)
start += step_ins - 1
break
else:
ret.append(message[start])
break
else:
ret.append(message[start])
start += 1

return ''.join(ret)

if __name__ == "__main__":
gfw = DFAFilter()
path="F:/文本反垃圾算法/sensitive_words.txt"
gfw.parse(path)
text="新疆骚乱苹果新品发布会雞八"
result = gfw.filter(text)

print(text)
print(result)
time2 = time.time()
print('总共耗时：' + str(time2 - time1) + 's')


E:\laidefa\python.exe "E:/Program Files/pycharmproject/敏感词过滤算法/敏感词过滤算法DFA.py"

****苹果新品发布会**

Process finished with exit code 0


2、AC自动机过滤敏感词算法

AC自动机：一个常见的例子就是给出n个单词，再给出一段包含m个字符的文章，让你找出有多少个单词在文章里出现过。

# -*- coding:utf-8 -*-

import time
time1=time.time()

# AC自动机算法
class node(object):
def __init__(self):
self.next = {}
self.fail = None
self.isWord = False
self.word = ""

class ac_automation(object):

def __init__(self):
self.root = node()

# 添加敏感词函数
temp_root = self.root
for char in word:
if char not in temp_root.next:
temp_root.next[char] = node()
temp_root = temp_root.next[char]
temp_root.isWord = True
temp_root.word = word

# 失败指针函数
def make_fail(self):
temp_que = []
temp_que.append(self.root)
while len(temp_que) != 0:
temp = temp_que.pop(0)
p = None
for key,value in temp.next.item():
if temp == self.root:
temp.next[key].fail = self.root
else:
p = temp.fail
while p is not None:
if key in p.next:
temp.next[key].fail = p.fail
break
p = p.fail
if p is None:
temp.next[key].fail = self.root
temp_que.append(temp.next[key])

# 查找敏感词函数
def search(self, content):
p = self.root
result = []
currentposition = 0

while currentposition < len(content):
word = content[currentposition]
while word in p.next == False and p != self.root:
p = p.fail

if word in p.next:
p = p.next[word]
else:
p = self.root

if p.isWord:
result.append(p.word)
p = self.root
currentposition += 1
return result

# 加载敏感词库函数
def parse(self, path):
with open(path,encoding='utf-8') as f:
for keyword in f:

# 敏感词替换函数
def words_replace(self, text):
"""
:param ah: AC自动机
:param text: 文本
:return: 过滤敏感词之后的文本
"""
result = list(set(self.search(text)))
for x in result:
m = text.replace(x, '*' * len(x))
text = m
return text

if __name__ == '__main__':

ah = ac_automation()
path='F:/文本反垃圾算法/sensitive_words.txt'
ah.parse(path)
text1="新疆骚乱苹果新品发布会雞八"
text2=ah.words_replace(text1)

print(text1)
print(text2)

time2 = time.time()
print('总共耗时：' + str(time2 - time1) + 's')


E:\laidefa\python.exe "E:/Program Files/pycharmproject/敏感词过滤算法/AC自动机过滤敏感词算法.py"

****苹果新品发布会**

Process finished with exit code 0


3、java 实现参考链接：
https://www.cnblogs.com/AlanLee/p/5329555.html

4、敏感词生成

# -*- coding:utf-8 -*-

path = 'F:/文本反垃圾算法/sensitive_worlds7.txt'
from 敏感词过滤算法.langconv import *
import pandas as pd
import pypinyin

# 文本转拼音
def pinyin(text):
"""
:param text: 文本
:return: 文本转拼音
"""
gap = ' '
piny = gap.join(pypinyin.lazy_pinyin(text))
return piny

# 繁体转简体
"""
:param text: 要过滤的文本
:return: 繁体转简体函数
"""
line = Converter('zh-hans').convert(text)
return line

chinise_lable=[]
chinise_type=data['type']

for i in data['lable']:
chinise_lable.append(line)

chg_data=pd.DataFrame({'lable':chinise_lable,'type':chinise_type})

eng_lable=[]
eng_type=data['type']
for i in data['lable']:
# print(i)
piny=pinyin(i)
# print(piny)
eng_lable.append(piny)

eng_data=pd.DataFrame({'lable':eng_lable,'type':eng_type})
# print(eng_data)
# 合并
result=chg_data.append(eng_data,ignore_index=True)

# 数据框去重

res = result.drop_duplicates()
print(res)

# 输出


• 7
点赞
• 73
收藏
觉得还不错? 一键收藏
• 打赏
• 11
评论

### “相关推荐”对你有帮助么？

• 非常没帮助
• 没帮助
• 一般
• 有帮助
• 非常有帮助

¥1 ¥2 ¥4 ¥6 ¥10 ¥20

1.余额是钱包充值的虚拟货币，按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载，可以购买VIP、付费专栏及课程。