HDU 4496 D-CITY(并查集)

HDU 4496 D-CITY(并查集)

题意:

        给出一个有N(0<N<=10000)个顶点的无向图(顶点编号0到N-1), 然后依次给出它的M(0<M<=100000)条边,要求依次输出当删除给出的前k(1<=K<=M)条边后,该图的连通分量总数。

        输入:第一行是N和M,然后是M行数(X,Y)(0<=X,Y<N)表示X与Y有边。

        输出:依次输出所求的连通分量数。

分析:

        当删除前K条边时图所剩的连通分量数 就是 N个点孤立时只添加后M-K条边时,所具有的连通分量数。

        所以仅需倒序插入每条边,分别保存插入边后新图所具有的连通分量数目在数组内,然后输出数组即可。

        进阶1:如果题目要求每次输出删除前i条边后的连通分量数目且i是随机给的呢?

        只需要将所有i按从大到小排序,然后离线处理所有的i询问之后按序输出所有结果就行。

        进阶2:如果题目要求在线处理每条请求呢?即要求及时给出每个i对应的连通分量数目。

        只需要预处理所有可能的i询问结果,然后输出指定询问结果即可。

AC代码(新):

#include<cstdio>
#include<cstring>
#include<vector>
using namespace std;
const int maxn=10000+5;
const int maxm=100000+5;

//并查集fa
int fa[maxn];
int findset(int x)
{
    return fa[x]==-1? x : fa[x]=findset(fa[x]);
}
int bind(int u,int v)
{
    int fu=findset(u);
    int fv=findset(v);
    if(fu!=fv)
    {
        fa[fu]=fv;
        return 1;//连通分量少了1个
    }
    return 0;
}

int main()
{
    int n,m;
    while(scanf("%d%d",&n,&m)==2)
    {
        memset(fa,-1,sizeof(fa));

        //vc按序保存所有的边
        vector<pair<int,int> > vc;
        for(int i=0;i<m;i++)
        {
            int x,y;
            scanf("%d%d",&x,&y);
            vc.push_back(make_pair(x,y));
        }

        //保存连通分量数
        vector<int> res;
        int cnt=n;//当前连通分量数
        res.push_back(cnt);
        for(int i=m-1;i>=1;i--)//逆序依次连接所有边
        {
            cnt -= bind(vc[i].first,vc[i].second);
            res.push_back(cnt);
        }

        for(int i=res.size()-1;i>=0;i--)
            printf("%d\n",res[i]);
    }
    return 0;
}


AC代码:中未加while(scanf("%d%d",&n,&m)==2)这行而直接用scanf("%d%d",&n,&m);就得到wrong的结果。

#include<cstdio>
using namespace std;
int pa[10000+200];
int x[100000+100],y[100000+100],sum[100000+100];
int findset(int x)
{
    return pa[x]==x?x:pa[x]=findset(pa[x]);
}
int main()
{
    int n,m;
    while(scanf("%d%d",&n,&m)==2)
    {
        for(int i=0; i<m; i++)
            scanf("%d%d",&x[i],&y[i]);
        for(int i=0; i<n; i++)
            pa[i]=i;
        sum[m-1]=n;//一条边都没有时的连通分量数
        for(int i=m-1; i>=0; i--) //一次加上从m-1到0号的边
        {
            int u=findset(x[i]),v=findset(y[i]);
            if(u!=v)
            {
                pa[u]=v;
                sum[i-1]=sum[i]-1;//sum[i]表删除前i号边(边从0开始计数到m-1)后剩的连通分量数
            }
            else sum[i-1]=sum[i];
        }
        for(int i=0; i<m; i++)
            printf("%d\n",sum[i]);
    }
    return 0;
}

new AC code:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=10000+5;
const int maxm=100000+5;

int n,m;
int ans[maxm];//ans[i]==x表删除前i条边所具有的连通分量
struct Edge//边
{
    int u,v;
}edges[maxm];

//并查集
int fa[maxn];
int findset(int x){ return fa[x]==-1?x:fa[x]=findset(fa[x]); }
int bind(int u,int v)
{
    int fu=findset(u);
    int fv=findset(v);
    if(fu!=fv)
    {
        fa[fu]=fv;
        return 1;
    }
    return 0;
}

int main()
{
    while(scanf("%d%d",&n,&m)==2)
    {
        memset(fa,-1,sizeof(fa));
        for(int i=1;i<=m;i++)
            scanf("%d%d",&edges[i].u,&edges[i].v);

        ans[m]=n;
        for(int i=m-1;i>=0;i--)
        {
            int u=edges[i+1].u, v=edges[i+1].v;
            ans[i]=ans[i+1]-bind(u,v);
        }

        for(int i=1;i<=m;i++)
            printf("%d\n",ans[i]);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值