HDU 4496 D-CITY(并查集)
题意:
给出一个有N(0<N<=10000)个顶点的无向图(顶点编号0到N-1), 然后依次给出它的M(0<M<=100000)条边,要求依次输出当删除给出的前k(1<=K<=M)条边后,该图的连通分量总数。
输入:第一行是N和M,然后是M行数(X,Y)(0<=X,Y<N)表示X与Y有边。
输出:依次输出所求的连通分量数。
分析:
当删除前K条边时图所剩的连通分量数 就是 N个点孤立时只添加后M-K条边时,所具有的连通分量数。
所以仅需倒序插入每条边,分别保存插入边后新图所具有的连通分量数目在数组内,然后输出数组即可。
进阶1:如果题目要求每次输出删除前i条边后的连通分量数目且i是随机给的呢?
只需要将所有i按从大到小排序,然后离线处理所有的i询问之后按序输出所有结果就行。
进阶2:如果题目要求在线处理每条请求呢?即要求及时给出每个i对应的连通分量数目。
只需要预处理所有可能的i询问结果,然后输出指定询问结果即可。
AC代码(新):
#include<cstdio>
#include<cstring>
#include<vector>
using namespace std;
const int maxn=10000+5;
const int maxm=100000+5;
//并查集fa
int fa[maxn];
int findset(int x)
{
return fa[x]==-1? x : fa[x]=findset(fa[x]);
}
int bind(int u,int v)
{
int fu=findset(u);
int fv=findset(v);
if(fu!=fv)
{
fa[fu]=fv;
return 1;//连通分量少了1个
}
return 0;
}
int main()
{
int n,m;
while(scanf("%d%d",&n,&m)==2)
{
memset(fa,-1,sizeof(fa));
//vc按序保存所有的边
vector<pair<int,int> > vc;
for(int i=0;i<m;i++)
{
int x,y;
scanf("%d%d",&x,&y);
vc.push_back(make_pair(x,y));
}
//保存连通分量数
vector<int> res;
int cnt=n;//当前连通分量数
res.push_back(cnt);
for(int i=m-1;i>=1;i--)//逆序依次连接所有边
{
cnt -= bind(vc[i].first,vc[i].second);
res.push_back(cnt);
}
for(int i=res.size()-1;i>=0;i--)
printf("%d\n",res[i]);
}
return 0;
}
AC代码:中未加while(scanf("%d%d",&n,&m)==2)这行而直接用scanf("%d%d",&n,&m);就得到wrong的结果。
#include<cstdio>
using namespace std;
int pa[10000+200];
int x[100000+100],y[100000+100],sum[100000+100];
int findset(int x)
{
return pa[x]==x?x:pa[x]=findset(pa[x]);
}
int main()
{
int n,m;
while(scanf("%d%d",&n,&m)==2)
{
for(int i=0; i<m; i++)
scanf("%d%d",&x[i],&y[i]);
for(int i=0; i<n; i++)
pa[i]=i;
sum[m-1]=n;//一条边都没有时的连通分量数
for(int i=m-1; i>=0; i--) //一次加上从m-1到0号的边
{
int u=findset(x[i]),v=findset(y[i]);
if(u!=v)
{
pa[u]=v;
sum[i-1]=sum[i]-1;//sum[i]表删除前i号边(边从0开始计数到m-1)后剩的连通分量数
}
else sum[i-1]=sum[i];
}
for(int i=0; i<m; i++)
printf("%d\n",sum[i]);
}
return 0;
}
new AC code:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=10000+5;
const int maxm=100000+5;
int n,m;
int ans[maxm];//ans[i]==x表删除前i条边所具有的连通分量
struct Edge//边
{
int u,v;
}edges[maxm];
//并查集
int fa[maxn];
int findset(int x){ return fa[x]==-1?x:fa[x]=findset(fa[x]); }
int bind(int u,int v)
{
int fu=findset(u);
int fv=findset(v);
if(fu!=fv)
{
fa[fu]=fv;
return 1;
}
return 0;
}
int main()
{
while(scanf("%d%d",&n,&m)==2)
{
memset(fa,-1,sizeof(fa));
for(int i=1;i<=m;i++)
scanf("%d%d",&edges[i].u,&edges[i].v);
ans[m]=n;
for(int i=m-1;i>=0;i--)
{
int u=edges[i+1].u, v=edges[i+1].v;
ans[i]=ans[i+1]-bind(u,v);
}
for(int i=1;i<=m;i++)
printf("%d\n",ans[i]);
}
return 0;
}