Whoosh如何搜索--进阶版

官方文档:https://whoosh.readthedocs.io/en/latest/searching.html

一旦创建了索引并向其中添加了文档,就可以搜索这些文档。

目录:

  1. searcher对象
  2. Resulted对象
  3. 得分和排序
  4. 筛选结果
  5. 我的查询中有哪些匹配项
  6. 折叠结果
  7. 限制搜索时间
  8. 方便的方法
  9. 结合结果对象

一、Searcher 对象

获得一个 whoosh.searching.Searcher 对象, 调用searcher() 在你的 Index 对象上:

searcher = myindex.searcher()

通常使用with语句来打开searcher,因为当你完成的时候,它可以自动关闭(搜索对象代表一个打开的文件,如果你不显式地关闭,系统会越来越卡,您可以手动关闭):

with ix.searcher() as searcher:
    ...

这当然等价于:

try:
    searcher = ix.searcher()
    ...
finally:
    searcher.close()

Searcher对象有很多有用的方法来获取关于索引的信息,比如lexicon(fieldname)'

>>> list(searcher.lexicon("content"))
[u"document", u"index", u"whoosh"]

然而Searcher对象上最重要的方法是 search(),查询 whoosh.query.Query 对象并返回s a Results 对象:

from whoosh.qparser import QueryParser

qp = QueryParser("content", schema=myindex.schema)
q = qp.parse(u"hello world")

with myindex.searcher() as s:
    results = s.search(q)

默认情况下,结果最多包含前10个匹配的文档。要获得更多的结果,使用limit关键字:

results = s.search(q, limit=20)

如果你想获得所有结果,使用limit=None

然而设置限制可以加速搜索速度,因为Whoosh不需要检出和为每个文档打分。

由于一次显示一个页面的结果是一种常见的模式,search_page方法让你方便地检索一个给定的页面上的结果:

results = s.search_page(q, 1)

默认的页面长度是10条数据。你可以使用pagelen关键字参数设置不同的页面长度:

results = s.search_page(q, 5, pagelen=20)

二、Results 对象

Results 对象的作用类似于匹配文档的列表。 您可以使用它来访问每个击中文档的存储字段,并将其显示给用户。

>>> # Show the best hit's stored fields (显示击中得分最高的存储字段)
>>> results[0]
{"title": u"Hello World in Python", "path": u"/a/b/c"}
>>> results[0:2]
[{"title": u"Hello World in Python", "path": u"/a/b/c"},
{"title": u"Foo", "path": u"/bar"}]

默认情况下, Searcher.search(myquery) 将命中次数限制为20, 因此Results对象中得分的命中次数可能小于索引中匹配文档的数量。

>>> # 整个索引中有多少文档是匹配的?
>>> len(results)
27
>>> # 在这个结果对象中有多少文档得分和排序?
>>> # 如果命中的次数有限,这个值通常小于len()
>>> # (the default).
>>> results.scored_length()
10

调用len(Results)再次运行一个快速(无得分)版本的查询,以计算匹配文档的总数。这通常是非常快的,但对于大型索引,这可能会造成明显的延迟。如果希望在非常大的索引上避免这种延迟,可以使用has_exact_length()estimated_length()estimated_min_length() 函数在不调用len()的情况下估计匹配文档数量的方法:

found = results.scored_length()
if results.has_exact_length():  # 有确切的长度
    print("Scored", found, "of exactly", len(results), "documents")
else:
    low = results.estimated_min_length()  # 估计的最小长度
    high = results.estimated_length()  # 估计长度

    print("Scored", found, "of between", low, "and", high, "documents")

三、得分 和 排序

1. 得分

通常结果文档的列表是按照score排序的。 whoosh.scoring 模块包含各种评分算法的实现。默认是BM25F

当你创建搜索使用你可以使用weighting 关键字参数设置评分对象:

from whoosh import scoring

with myindex.searcher(weighting=scoring.TF_IDF()) as s:
    ...

加权模型是一个 WeightingModel 子类,带有一个scorer()方法,产生一个“scorer” 实例。该实例有一个获取当前匹配器并返回浮点分数的方法。

2. 排序

Sorting and faceting.

高亮显示代码片段及类似内容

How to create highlighted search result excerptsQuery expansion and Key word extraction 以获取有关这些主题的信息。

四、筛选结果

可以使用filter 关键字参数search()来指定允许在结果中显示的一组文档

参数可以是一个 whoosh.query.Query 对象,一个 whoosh.searching.Results 对象,或者一个包含文档编号的类似集合的对象。

searcher缓存筛选器,例如,如果您多次使用与searcher相同的查询筛选器,那么额外的搜索将会更快,因为searcher将缓存运行筛选器查询的结果。

您还可以指定一个mask键字参数来指定结果中不显示的一组文档

with myindex.searcher() as s:
    qp = qparser.QueryParser("content", myindex.schema)
    user_q = qp.parse(query_string)

    # 只显示“rendering”章节中的文档 Only show documents in the "rendering" chapter
    allow_q = query.Term("chapter", "rendering")
    # 不要显示任何“tag”字段包含“todo”的文档 Don't show any documents where the "tag" field contains "todo"
    restrict_q = query.Term("tag", "todo")

    results = s.search(user_q, filter=allow_q, mask=restrict_q)

(如果您同时指定了一个filter 和一个mask,并且在两者中都出现了一个匹配的文档,那么mask将“获胜”,该文档是不显示。)

要查明从结果中过滤出了多少结果,请使用results.filtered_count(或者resultspage.results.filtered_count

with myindex.searcher() as s:
    qp = qparser.QueryParser("content", myindex.schema)
    user_q = qp.parse(query_string)

    # 过滤超过7天的文档 Filter documents older than 7 days
    old_q = query.DateRange("created", None, datetime.now() - timedelta(days=7))
    results = s.search(user_q, mask=old_q)

    print("Filtered out %d older documents" % results.filtered_count)

五、我的查询中有哪些匹配项?

您可以使用terms=True关键字参数来search() ,以便搜索记录查询中的哪些词汇与哪些文档相匹配:

with myindex.searcher() as s:
    results = s.seach(myquery, terms=True)

您可以从 whoosh.searching.Resultswhoosh.searching.Hit对象中获得匹配哪些项的信息:

# 这个结果对象是用terms=True创建的吗? Was this results object created with terms=True?
if results.has_matched_terms():
    # 结果中哪些项相匹配?  What terms matched in the results?
    print(results.matched_terms())

    # 每次命中匹配哪些项?  What terms matched in each hit?
    for hit in results:
        print(hit.matched_terms())

六、折叠结果

Whoosh允许您从结果中删除除前N个文档之外的所有具有相同facet键的文档。这在一些情况下很有用:

  • 在搜索时消除重复。
  • 限制每个源匹配的数量。例如,在web搜索应用程序中,您可能希望最多显示来自任何网站的三个匹配项。

文档是否应该折叠取决于“collapse facet(折叠面)”的值。如果一个文档有一个空的折叠键,那么它将永远不会被折叠,但是在其他情况下,只有具有相同折叠键的前N个文档才会出现在结果中。

Sorting and faceting 获取有关方面的信息。

with myindex.searcher() as s:
    # 将facet设置为可折叠,并设置每个文档的最大数量 Set the facet to collapse on and the maximum number of documents per
    # facet值(默认值为1)  facet value (default is 1)
    results = s.collector(collapse="hostname", collapse_limit=3)

    # 字典映射折叠键到的文档数量  Dictionary mapping collapse keys to the number of documents that
    # 通过使用那个键被过滤掉的文档  were filtered out by collapsing on that key
    print(results.collapsed_counts)

折叠工作与评分和排序的结果。你可以使用whoosh.sorting模型中提供的任何可用类型。

默认情况下,Whoosh使用结果顺序(分数或排序键)来确定要折叠的文档。例如,在评分结果中,最好的评分文档将被保留。您可以选择指定一个``collapse_order方面,以控制在崩溃时保留哪些文档。

例如,在一个产品搜索中,您可以显示按价格递减排序的结果,并删除除每个产品类型的最高评级项目以外的所有项目:

from whoosh import sorting

with myindex.searcher() as s:
    price_facet = sorting.FieldFacet("price", reverse=True)
    type_facet = sorting.FieldFacet("type")
    rating_facet = sorting.FieldFacet("rating", reverse=True)

    results = s.collector(sortedby=price_facet,  # Sort by reverse price
                          collapse=type_facet,  # Collapse on product type
                          collapse_order=rating_facet  # Collapse to highest rated
                          )

崩溃发生在搜索过程中,因此它通常比查找所有内容并对结果进行后处理更有效。但是,如果崩溃消除了大量的文档,那么崩溃搜索将花费更长的时间,因为搜索必须考虑更多的文档并删除许多已经收集的文档。

因为这个收集器必须有时返回和删除已收藏的文档,如果你使用它结合 TermsCollector 和/或FacetCollector,这些收集器可能包含文档的信息过滤掉的最终结果崩溃。

七、限制搜索时间

要限制搜索所需的时间:

from whoosh.collectors import TimeLimitCollector, TimeLimit

with myindex.searcher() as s:
    # 获取一个收集器对象
    c = s.collector(limit=None, sortedby="title_exact")
    # 用一个限时的收集器将它包起来,并将时间限制设置为10秒
    tlc = TimeLimitedCollector(c, timelimit=10.0)

    # 尝试搜索
    try:
        s.search_with_collector(myquery, tlc)
    except TimeLimit:
        print("搜索时间太长了,中止了!")

    # 您仍然可以从收集器获得部分结果
    results = tlc.results()

八、方便的方法

Searcher对象上的 document()documents()方法允许检索与在关键字参数中传递的术语相匹配的文档存储字段。

这对于日期/时间、标识符、路径等字段尤其有用。

>>> list(searcher.documents(indexeddate=u"20051225"))
[{"title": u"Christmas presents"}, {"title": u"Turkey dinner report"}]
>>> print searcher.document(path=u"/a/b/c")
{"title": "Document C"}

这些方法有一定的局限性:

  • 结果不计分。
  • 多个关键字总是被混合在一起。
  • 每个关键字参数的整个值被认为是一个单独的术语;您不能在同一字段中搜索多个术语。

九、结合结果对象

有时,使用另一个查询的结果来影响whoosh.searching.Results 对象的顺序是很有用的。

例如,您可能有一个“best bet”字段。该字段包含为文档精心挑选的关键字。当用户搜索这些关键字时,您希望将这些文档放在结果列表的顶部。你可以尝试通过极大地增加“best bet”来做到这一点,但这可能会对得分产生不可预测的影响。简单地运行两次查询并合并结果会更容易:

# 解析用户查询
userquery = queryparser.parse(querystring)

# 获取搜索到的术语
termset = set()
userquery.existing_terms(termset)

# 为用户制定一个“bestbet”查询
# 在“content”字段中搜索
bbq = Or([Term("bestbet", text) for fieldname, text
          in termset if fieldname == "content"])

# 查找与搜索项匹配的文档
results = s.search(bbq, limit=5)

# 查找与原始查询匹配的文档
allresults = s.search(userquery, limit=10)

# 将用户查询结果添加到“best bet”结果的末尾。
# 如果文档同时出现在两个结果集中,则将它们推到组合结果的顶部。
results.upgrade_and_extend(allresults)

Results '对象支持以下方法:

  • Results.extend(results)

    将“result”中的文档添加到结果文档列表的末尾。

  • Results.filter(results)

    从结果文档列表中删除“result”中的文档。

  • Results.upgrade(results)

    任何出现在“result”中的结果文档都将移动到结果文档列表的顶部。

  • Results.upgrade_and_extend(results)

    任何出现在“result”中的结果文档都将移动到结果文档列表的顶部。然后将“result”中的任何其他文档添加到结果文档列表中。

要在Whoosh中添加全文索引,需要执行以下步骤: 1. 安装Whoosh:可以使用pip安装Whoosh。在命令行中运行以下命令:`pip install whoosh` 2. 创建索引:首先,您需要创建一个索引目录来存储索引。接下来,您需要定义一个Schema,它描述了要索引的文档的结构。示例代码: ``` from whoosh.fields import Schema, TEXT, ID # 定义Schema,包含id和content两个字段 schema = Schema(id=ID(unique=True, stored=True), content=TEXT(stored=True)) ``` 3. 添加文档:使用Index对象将文档添加到索引中。示例代码: ``` from whoosh.index import create_in from whoosh.index import open_dir # 创建索引目录,如果已存在则打开 index_dir = "indexdir" if not os.path.exists(index_dir): os.mkdir(index_dir) ix = create_in(index_dir, schema) # ix = open_dir(index_dir) # 如果索引目录已存在,使用此行代码代替上一行代码打开索引 # 添加文档到索引 writer = ix.writer() writer.add_document(id=u"1", content=u"This is the first document we've added!") writer.add_document(id=u"2", content=u"The second one is even more interesting!") writer.commit() ``` 4. 搜索:使用QueryParser和Searcher对象执行搜索。示例代码: ``` from whoosh.qparser import QueryParser # 创建查询解析器 qp = QueryParser("content", schema=schema) # 创建查询对象 q = qp.parse("interesting") # 执行查询 with ix.searcher() as searcher: results = searcher.search(q) print("Number of results:", len(results)) for hit in results: print(hit["id"], hit["content"]) ``` 这是一个简单的Whoosh全文索引示例。您可以使用它作为起点,进一步扩展和优化搜索功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鬼义虎神

打赏5C币,作者可获得4C币

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值