车牌识别关键技术-车牌定位

本文介绍了基于OpenCV的车牌识别系统中的车牌定位关键步骤,包括彩色图转灰度图、对比度增强、边缘检测(使用Sobel算子)和区域筛选。通过边缘信息聚合、形态学操作及长宽比判断,确定车牌候选区域,最终筛选出车牌。
摘要由CSDN通过智能技术生成

  博主渣渣本科一枚,毕业设计选了一个基于OpenCV的车牌识别的题目,在此记下其中用到的一些关键技术备忘,也希望可以给后来人些许启发。
  车牌识别的第一步自然是想办法把车牌从一张图片中提取出来,也就是所谓的车牌定位。目前方法有很多,我采用的是基于边缘检测的车牌定位方案。
  一般来说由于车牌区域有车牌字符的存在,所以会有相当丰富的边缘信息,所以可以求取车牌的边缘图像,然后把所有分布密集的边缘聚合在一起就可以得到一些候选区域,而这些候选区域中就应当包含有我们要找的车牌区域,这时候只要再通过候选区域的长宽比,颜色等信息就可以找到车牌了。
思路讲完了,现在开始正题:

原始图像
源图像

  这是我在网上随意找的一张图片,为了便于展示处理流程,接下来我讲的所有操作都将以这幅图为例。

1.彩色图转灰度图

  首先要把RGB彩色图像转为灰度图像,这一步无需多讲,OpenCV自带库函数void cvCvtColor( const CvArr* src, CvArr* dst, int code );一行直接搞定,其中src表示输入的源彩色图像,dst存放输出的灰度图像,code选CV_RGB2GRAY得到灰度图像

灰度图
灰度图

2.对比度增强

  对比度增强这一步是为了让图像中的边缘更加明显。这里采用基于顶帽变换和底帽变换的方法来增强对比度。即:

enhanced(g)=g+Tophat(g)Bothat(g)

  其中, g
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值