博主渣渣本科一枚,毕业设计选了一个基于OpenCV的车牌识别的题目,在此记下其中用到的一些关键技术备忘,也希望可以给后来人些许启发。
车牌识别的第一步自然是想办法把车牌从一张图片中提取出来,也就是所谓的车牌定位。目前方法有很多,我采用的是基于边缘检测的车牌定位方案。
一般来说由于车牌区域有车牌字符的存在,所以会有相当丰富的边缘信息,所以可以求取车牌的边缘图像,然后把所有分布密集的边缘聚合在一起就可以得到一些候选区域,而这些候选区域中就应当包含有我们要找的车牌区域,这时候只要再通过候选区域的长宽比,颜色等信息就可以找到车牌了。
思路讲完了,现在开始正题:
源图像
这是我在网上随意找的一张图片,为了便于展示处理流程,接下来我讲的所有操作都将以这幅图为例。
1.彩色图转灰度图
首先要把RGB彩色图像转为灰度图像,这一步无需多讲,OpenCV自带库函数void cvCvtColor( const CvArr* src, CvArr* dst, int code );一行直接搞定,其中src表示输入的源彩色图像,dst存放输出的灰度图像,code选CV_RGB2GRAY得到灰度图像
灰度图
2.对比度增强
对比度增强这一步是为了让图像中的边缘更加明显。这里采用基于顶帽变换和底帽变换的方法来增强对比度。即:
enhanced(g)=g+Tophat(g)−Bothat(g)
其中, g