hdu 1695 莫比乌斯反演

本文探讨了如何使用莫比乌斯反演解决HDU 1695算法题目的过程,详细解析了莫比乌斯反演在组合数学中的应用,并提供了具体的解题思路和步骤。
摘要由CSDN通过智能技术生成
hdu 1695 莫比乌斯反演
题意:
给出a,b,c,d,k, 求满足a <= x <= b && c <= y <= d && gcd(x,y)=k 的数对(x,y)的对数。

限制:
a=c=1; 0 < b,c <= 1e5; (n1,n2) 和 (n2,n1) 算为同种情况

思路:
其实是求满足1 <= x <= b/k && 1 <= y <= d/k && gcd(x,y)=1 的 数对(x,y)的对数。
莫比乌斯反演入门题
设f(k)为gcd(x,y)=k的数对(x,y)的对数,我们要求的是f(1)
设F(k)为gcd(x,y)为k的倍数的数对(x,y)的对数,可以想到F(k)=floor(b/k)*floor(d/k),
由莫比乌斯反演得:
令lim=min(b/k,d/k)
f(1)=mu[1]*F(1) + mu[2]*F[2] + ... + mu[lim]*F(lim)
因为(n1,n2)和(n2,n1)算为同一种情况,所以最后结果还要减掉重复的情况。

ps:这道题还可以用容斥做。

/*hdu 1695
  题意:
  给出a,b,c,d,k, 求满足a <= x <= b && c <= y <= d && gcd(x,y)=k 的数对(x,y)的对数。
  限制:
  a=c=1; 0 < b,c <= 1e5; (n1,n2) 和 (n2,n1) 算为同种情况
  思路:
  其实是求满足1 <= x <= b/k && 1 <= y <= d/k && gcd(x,y)=1 的 数对(x,y)的对数。
  莫比乌斯反演入门题
  设f(k)为gcd(x,y)=k的数对(x,y)的对数,我们要求的是f(1)
  设F(k)为gcd(x,y)为k的倍数的数对(x,y)的对数,可以想到F(k)=floor(b/k)*floor(d/k),
  由莫比乌斯反演得:
  令lim=min(b/k,d/k)
  f(1)=mu[1]*F(1) + mu[2]*F[2] + ... + mu[lim]*F(lim)
  因为(n1,n2)和(n2,n1)算为同一种情况,所以最后结果还要减掉重复的情况。
 */
#include
    
    
     
     
#include
     
     
      
      
using namespace std;
#define LL __int64
const int N=1e5+5;
int mu[N];
//O(nlog(n))
void getMu(){
	for(int i=1;i
      
      
       
       d) swap(b,d);
		LL ans1=0;
		for(int i=1;i<=b;++i)
			ans1+=(LL)mu[i]*(b/i)*(d/i);
		LL ans2=0;
		for(int i=1;i<=b;++i)
			ans2+=(LL)mu[i]*(b/i)*(b/i);
		ans1-=ans2/2;
		printf("%I64d\n",ans1);
	}
	return 0;
}

      
      
     
     
    
    


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值