hdu 1695 莫比乌斯反演
题意: 给出a,b,c,d,k, 求满足a <= x <= b && c <= y <= d && gcd(x,y)=k 的数对(x,y)的对数。
限制:
a=c=1; 0 < b,c <= 1e5; (n1,n2) 和 (n2,n1) 算为同种情况
思路:
其实是求满足1 <= x <= b/k && 1 <= y <= d/k && gcd(x,y)=1 的 数对(x,y)的对数。
莫比乌斯反演入门题
设f(k)为gcd(x,y)=k的数对(x,y)的对数,我们要求的是f(1)
设F(k)为gcd(x,y)为k的倍数的数对(x,y)的对数,可以想到F(k)=floor(b/k)*floor(d/k),
由莫比乌斯反演得:
令lim=min(b/k,d/k)
f(1)=mu[1]*F(1) + mu[2]*F[2] + ... + mu[lim]*F(lim)
因为(n1,n2)和(n2,n1)算为同一种情况,所以最后结果还要减掉重复的情况。
ps:这道题还可以用容斥做。
题意: 给出a,b,c,d,k, 求满足a <= x <= b && c <= y <= d && gcd(x,y)=k 的数对(x,y)的对数。
限制:
a=c=1; 0 < b,c <= 1e5; (n1,n2) 和 (n2,n1) 算为同种情况
思路:
其实是求满足1 <= x <= b/k && 1 <= y <= d/k && gcd(x,y)=1 的 数对(x,y)的对数。
莫比乌斯反演入门题
设f(k)为gcd(x,y)=k的数对(x,y)的对数,我们要求的是f(1)
设F(k)为gcd(x,y)为k的倍数的数对(x,y)的对数,可以想到F(k)=floor(b/k)*floor(d/k),
由莫比乌斯反演得:
令lim=min(b/k,d/k)
f(1)=mu[1]*F(1) + mu[2]*F[2] + ... + mu[lim]*F(lim)
因为(n1,n2)和(n2,n1)算为同一种情况,所以最后结果还要减掉重复的情况。
ps:这道题还可以用容斥做。
/*hdu 1695
题意:
给出a,b,c,d,k, 求满足a <= x <= b && c <= y <= d && gcd(x,y)=k 的数对(x,y)的对数。
限制:
a=c=1; 0 < b,c <= 1e5; (n1,n2) 和 (n2,n1) 算为同种情况
思路:
其实是求满足1 <= x <= b/k && 1 <= y <= d/k && gcd(x,y)=1 的 数对(x,y)的对数。
莫比乌斯反演入门题
设f(k)为gcd(x,y)=k的数对(x,y)的对数,我们要求的是f(1)
设F(k)为gcd(x,y)为k的倍数的数对(x,y)的对数,可以想到F(k)=floor(b/k)*floor(d/k),
由莫比乌斯反演得:
令lim=min(b/k,d/k)
f(1)=mu[1]*F(1) + mu[2]*F[2] + ... + mu[lim]*F(lim)
因为(n1,n2)和(n2,n1)算为同一种情况,所以最后结果还要减掉重复的情况。
*/
#include
#include
using namespace std;
#define LL __int64
const int N=1e5+5;
int mu[N];
//O(nlog(n))
void getMu(){
for(int i=1;i
d) swap(b,d);
LL ans1=0;
for(int i=1;i<=b;++i)
ans1+=(LL)mu[i]*(b/i)*(d/i);
LL ans2=0;
for(int i=1;i<=b;++i)
ans2+=(LL)mu[i]*(b/i)*(b/i);
ans1-=ans2/2;
printf("%I64d\n",ans1);
}
return 0;
}