uva 10404 Nim博弈论变式

题意:

给n个石子和m种情况,代表一次可以拿mi个石头。

拿到最后一个石子的人赢。

问最后谁赢。


解析:

枚举,不断去翻转状态。

for (int i = 1; i <= n; i++)
{
    for (int j = 0; j < m; j++)
    {
        if (i - a[j] >= 0 && dp[i - a[j]] == 0)
        {
            dp[i] = 1;
            break;
        }
    }
}

0代表Ollie获胜,1代表Stan获胜。当前一状态 i - a[j] 是Olie获胜,这一状态必然是Stan。

因为Stan只要拿 a[j] 个石子就ok了。

这里加了一个break剪枝,不剪枝1122ms,剪枝552ms,快了一倍。


代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <stack>
#include <vector>
#include <queue>
#include <map>

#define LL long long

using namespace std;
const int maxn = 1e6 + 10;
const int inf = 0x3f3f3f3f;
const double eps = 1e-8;
const double pi = 4 * atan(1.0);
const double ee = exp(1.0);

int dp[maxn];
int a[15];

int main()
{
    #ifdef LOCAL
    freopen("in.txt", "r", stdin);
    #endif // LOCAL
    int n;
    while (scanf("%d", &n) == 1)
    {
        int m;
        scanf("%d", &m);
        for (int i = 0; i < m; i++)
        {
            scanf("%d", &a[i]);
        }
        memset(dp, 0, sizeof(dp));
        for (int i = 1; i <= n; i++)
        {
            for (int j = 0; j < m; j++)
            {
                if (i - a[j] >= 0 && dp[i - a[j]] == 0)
                {
                    dp[i] = 1;
                    break;
                }
            }
        }
        if (dp[n])
        {
            printf("Stan wins\n");
        }
        else
        {
            printf("Ollie wins\n");
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值