DeepWalk、Line和Node2vec对图结构数据进行随机游走,成功将其转化为一个序列问题,并利用Word2vec训练得到节点的Embedding向量。但它们都基于同构图,其节点均属于同一种类型。但现实世界的数据网络大多基于异构图,其节点类型以及节点间关系是多元化的。因此基于异构图的Graph Embedding十分重要。
基于异构图游走的Graph Embedding,以Metapath2Vec和EGES等网络为代表。
DeepWalk、Line和Node2vec对图结构数据进行随机游走,成功将其转化为一个序列问题,并利用Word2vec训练得到节点的Embedding向量。但它们都基于同构图,其节点均属于同一种类型。但现实世界的数据网络大多基于异构图,其节点类型以及节点间关系是多元化的。因此基于异构图的Graph Embedding十分重要。
基于异构图游走的Graph Embedding,以Metapath2Vec和EGES等网络为代表。