神经网络 ANN(一)

这篇博客介绍了神经网络的基础知识,特别是人工神经网络(ANN)的原理。文章从ANN的缘由出发,阐述了输入、输出及权重之间的关系,并讨论了激活函数如sigmoid和ReLU的作用。接着,讲解了ANN的结构,包括输入层、隐藏层和输出层,以及训练过程中参数的调整。最后,提到了使用Java实现ANN的可能性,并推荐了相关学习资源。
摘要由CSDN通过智能技术生成

神经网络 ANN
新年啦!先给自己一个小小的改变,比如写一篇博客。
再给自己一个小目标,比如3天内徒手写个ANN~~
所以,以下内容是在3天的时间内学到的,未免有不足之处,望指教。


0.ANN缘由

ANN不是一下子就可以被发明出来的,期间经过了几代人的努力才慢慢成型(参考【1】)
从单个神经元讲起。
一个神经元其实很笨,它可以有多个输入,但只有一种输出,模型如下:

单个神经元模型

上图中,a1,a2,a3是输入,Z是输出,中间w1,w2,w3是可调参数(权值)
它们之间的关系是写定的:Z=g(a1*w1+a2*w2+a3*w3)
这里,Z=g(x),g(x)一般为sigmoid函数

激活函数activation function,sigmoid函数 y=

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值