用户画像是针对产品/服务目标群体真实特征的勾勒,是真实用户的综合原型。
昨晚上看了两篇关于用户画像的文章,做总结如下
1. 如何避免形式主义的用户画像
这篇文章主要围绕着如何设计用户标签体系展开。
开篇先讲解了“用户画像”和其另一个名字“受众定向”,作者认为我们平时说的“用户画像”听起来更加关注人口属性、生活状态等静态信息,这并没有表达出我们的重点关注点(例如:某用户“最近要不要旅游”、“准备买多少钱的车”等能驱动直接效果的动态信息)。所以作者认为如果从这层意思上说,用“受众定向”更加准确。
再一个就是作者认为我们设计标签体系的时候不能只是追求形式上的高大上,因为完备的、静态的标签体系是不存在的。我们要结合领域知识、针对具体的问题进行深入的思考,设计符合实际情况的标签。说白了就是要洞彻在这个行业里,用户决定买什么、不买什么的原因和逻辑。主要就是多思考,根据行业特点灵活设计。
最后作者甩了一个衡量用户画像结果的质量的reach/CTR曲线:
横坐标reach,表示的是某个标签(例如“汽车”)触及到的用户在整体用户中的占比;
纵坐标即CTR,表示的是该标签的用户在对应类型的广告(上例中为汽车广告)上表现出来的点击率。
因为纵坐标考虑的只有拥有某一个标签的用户群的点击率。所以该用户占总体用户的比例越小,可能CTR越高。曲线的最右端reach等于100%的点,对应的CTR是该类型广告的平均点击率,这个点跟模型无关,是固定的。而随着reach的降低,一般来说CTR会对应提高(当然这一点没有理论上的保证)。
为什么会是一条曲线呢?因为我们在做受众定向时,往往会在用户在该标签的得分上设置一个阈值,判断是否是该类型用户,随着阈值设置的不同,reach水平就会变化,相应地CTR也就会变化。一般来说,两条reach/CTR曲线相比时,整体处于上方的曲线有较好的定向性能。
2.互联网人群画像和你所不知道的真相
这篇文章很长,主要讲了一些唯一身份标识的常用方法和困难。大体就是说怎么确定浏览不同网站的用户、用着不同客户端、不同APP的用户是同一个用户。因为网站方面的知识匮乏,看了这篇文章感觉上还是长了一些见识的,无聊的时候可以看看~