Citavi系列之Word参考文献APA转LaTeX Bib文件

     

Citavi 正常的文献管理等功能大家都会,而我偏要把 Citavi 玩出花儿来。

我要用 Citavi 实现 word 参考文献转 Latex Bib 的功能。先放一波效果图:

大家 word 中的参考文献的引用格式是不是这样?

但是投稿 SCI 期刊时,参考文献的格式 (Bib) 是不是这样?

然后

不要害怕,这个问题我解决啦,工欲善其事必先利其器。

 

一、Citavi介绍

       Citavi 是一个“文献管理与知识组织(Reference Management & Knowledge Organization)”软件,可以支撑从来源检索到论文写作的全过程(Citavi supports the entire research process — from searching for sources to finishing your paper)。它是用来管理文献的专门软件。在研究和阅读的过程中一定会下载很多相关文献,那么就要相应地根据类别或使用段落将他们放到不同的分组文件夹中。当然也可以使用文献管理软件,在这里推荐大家使用 Citavi 文献管理软件。使用这个软件的好处就在于可以很清晰地对文献进行整理和分类。这个软件可以让你添加标签以便给录入的条目加上注释。这样,在你开始写论文之前,你可以快速找到可能有用的参考文献。

       因为在 LaTeX 中编辑不方便修改和审阅,所以一般都会选择在 Word 中编辑文本后,再放入 LaTeX 中进行排版。但是如果参考文献和引用不是用 Citavi 等管理好的话,在导入参考文献到 LaTeX 中就比较麻烦,本文主要解决的问题是:将 Word 中的 APA 格式的参考文献直接转换为 .bib 格式。

二、导入 Citavi 的 word2Tex 样式

1.  自动生成每个参考文献生成 citation key

2.  导入Word2Tex样式

    1.  下载安装 Citavi

    2.  下载word2Tex样式

    3.  拷贝 word2Tex.ccs 文件到 Citavi 的样式目录

三、大工告成,可以使用了。那么如何用呢?

1、在 word 中随便使用哪个参考文献的格式,比如我选择的是T-PAMI,毕竟我也是想发T-PAMI的人,然后按照正常的参考文献管理方式插入引文就行了。

 

2、等论文写完之后,在 word 中选择参考文献样式为 word2Tex,然后将 References 复制到Bib即可。

四、和 text2bib 的对比

    原始的参考文献

    使用 text2bib 转换后的 Bib 文件

    使用 Citavi 转换后的 Bib 文件

    这里安利一下 Python 的 betterbib 工具,经过 betterbib 工具优化后的 Bib 文件(注意:我优化的是 text2bib 转换后的 Bib 文件,看 citation key 就知道了)

 

五、后续

    下期介绍如何制作word2Tex样式,欢迎Github star

 

参考文献:

  1. https://my.oschina.net/jiangroubao/blog/4562654

  2. https://jingyan.baidu.com/article/3aed632e2e42df70108091fc.html

  3. https://blog.csdn.net/lanbing510/article/details/46745533

  4. https://blog.csdn.net/jueshu/article/details/84826308

  5. https://www.zhihu.com/question/438318290/answer/1667133418

  6. http://blog.sciencenet.cn/home.php?mod=space&uid=3273400&do=blog&id=1035032

  7. http://www.voidcn.com/article/p-eaagiwfh-bps.html

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

3D感知巨头

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值