闵可夫斯基引擎Minkowski Engine安装指南

Minkowski Engine is an auto-diff neural network library for high-dimensional sparse tensors. 有关更多信息,请访问文档页面项目主页

一、机器环境

操作系统为ubuntu16.04,显卡为1080Ti,ninja=1.10.2.4,anaconda环境(python=3.7,pytorch=1.8.0,torchaudio=0.8.0,torchvision=0.9.0,cudatoolkit=11.1.1)

二、检查gcc版本

# gcc -v # 如果gcc版本为5.5,一定要升级! 升级gcc

$ sudo add-apt-repository ppa:ubuntu-toolchain-r/test

$ sudo apt-get update

$ sudo apt-get install gcc-7

$ sudo apt-get install g++-7

# 配置:将gcc7,g++7作为默认选项

$ sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-7 100

$ sudo update-alternatives --config gcc

$ sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-7 100

$ sudo update-alternatives --config g++

三、设置环境变量

设置CUDA_HOME和LD_LIBRARY_PATH环境变量

$ export CUDA_HOME=/usr/local/cuda-11.1/
$ export LD_LIBRARY_PATH=/usr/local/cuda-11.1/lib64/

设置PATH变量

# 其实就是在PATH变量中,将原先的/usr/local/cuda/bin/改成/usr/local/cuda-11.1/bin/。因为我的机器上同时存在多个cuda,默认的cuda版本是10.1,所以需要手动指定一下使用的cuda版本。设置PATH变量,是为了使用cuda-11.1中的nvcc命令。

$ export PATH=/home/autolab/bin:/home/autolab/.local/bin:/home/autolab/anaconda3/envs/SFD_PC1/bin:/home/autolab/anaconda3/condabin:/home/autolab/2021robots/tmux_depend/bin:/home/autolab/python3.8/bin:/usr/local/cuda-11.1/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin:/home/autolab/bin

设置算力变量

# 如果是最新的3090、4090等算力高的显卡,可不用设置。由于我们的显卡是1080Ti,所以需要指定一下算力。算力查询

$ export TORCH_CUDA_ARCH_LIST="6.1"

四、安装Minkowski Engine

pip install -U MinkowskiEngine --install-option="--blas=openblas" -v --no-deps

其他安装方法请移步官方的github repo

五、算力查询

显卡 计算能力
NVIDIA TITAN RTX 7.5
Geforce RTX 2080 Ti 7.5
Geforce RTX 2080 7.5
Geforce RTX 2070 7.5
Geforce RTX 2060 7.5
NVIDIA TITAN V 7.0
NVIDIA TITAN Xp 6.1
NVIDIA TITAN X 6.1
GeForce GTX 1080 Ti 6.1
GeForce GTX 1080 6.1
GeForce GTX 1070 6.1
GeForce GTX 1060 6.1
GeForce GTX 1050 6.1
GeForce GTX TITAN X 5.2
GeForce GTX TITAN Z 3.5
GeForce GTX TITAN黑色 3.5
GeForce GTX TITAN 3.5
GeForce GTX 980 Ti 5.2
GeForce GTX 980 5.2
GeForce GTX 970 5.2
GeForce GTX 960 5.2
GeForce GTX 950 5.2
GeForce GTX 780 Ti 3.5
GeForce GTX 780 3.5
GeForce GTX 770 3.0
GeForce GTX 760 3.0
GeForce GTX 750 Ti 5.0
GeForce GTX 750 5.0
GeForce GTX 690 3.0
GeForce GTX 680 3.0
GeForce GTX 670 3.0
GeForce GTX 660 Ti 3.0
GeForce GTX 660 3.0
GeForce GTX 650 Ti BOOST 3.0
GeForce GTX 650 Ti 3.0
GeForce GTX 650 3.0
GeForce GTX 560 Ti 2.1
GeForce GTX 550 Ti 2.1
GeForce GTX 460 2.1
GeForce GTS 450 2.1
GeForce GTS 450 * 2.1
GeForce GTX 590 2.0
GeForce GTX 580 2.0
GeForce GTX 570 2.0
GeForce GTX 480 2.0
GeForce GTX 470 2.0
GeForce GTX 465 2.0
GeForce GT 740 3.0
GeForce GT 730 3.5
GeForce GT 730 DDR3,128位 2.1
GeForce GT 720 3.5
GeForce GT 705 * 3.5
GeForce GT 640(GDDR5) 3.5
GeForce GT 640(GDDR3) 2.1
GeForce GT 630 2.1
GeForce GT 620 2.1
GeForce GT 610 2.1
GeForce GT 520 2.1
GeForce GT 440 2.1
GeForce GT 440 * 2.1
GeForce GT 430 2.1
GeForce GT 430 * 2.1
 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

3D感知巨头

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值