PCA算法是怎么跟协方差矩阵/特征值/特征向量勾搭起来的

转自:https://www.cnblogs.com/dengdan890730/p/5495078.html

PCA算法是怎么跟协方差矩阵/特征值/特征向量勾搭起来的?

PCA, Principle Component Analysis, 主成份分析, 是使用最广泛的降维算法.
......
(关于PCA的算法步骤和应用场景随便一搜就能找到了, 所以这里就不说了. )


假如你要处理一个数据集, 数据集中的每条记录都是一个dd维列向量. 但是这个dd太大了, 所以你希望把数据维度给降下来, 既可以去除一些冗余信息, 又可以降低处理数据时消耗的计算资源(用computation budget 来描述可能更形象).

用稍微正式点的语言描述:

  • 已知:一个数据集DD, 记录(或者样本, 或input pattern)xiDxi∈D 是dd维列向量.
  • 目标:将每个xDx∈D 映射到另一个pp维空间, p<dp<d(虽然等于也是可以的, 但没什么意义). 得到一个新的数据集ZZ, 对ZZ的要求是尽量保存DD中的有效信息.

那么, 问题就来了. 如何将一个dd维向量映射成一个pp维向量? 答案是基变换. 然而基变换方式不是唯一的, 如何确保变换是最优的? 这就由优化目标"尽量保存原数据集中的信息" 决定了: 最好的基变换能保存最多的信息. 注意了, 这里的比较都是在同一个pp下进行的, 也就是说, 参与竞争的基集(basis set)们, 都把ddDD映射到了一个新的ppZZ.

那么, (不好意思, 又一个那么. 这不是第一个, 当然也不是最后一个. 是的, 我喜欢用这个词.), 现在面临的问题是, 如何衡量信息的多少? 我并不懂信息科学, 只知道一点, 信息在差异中存在. 如果全是相同的东西, 量再多,它的信息量也没有多少. PCA算法采用方差(variance)来度量信息量.

那么, 如何用variance来度量数据集DD包含的信息量呢? 一个基(basis)一个基地衡量. 数据集在某个基上的投影值(也是在这个基上的坐标值)越分散, 方差越大, 这个基保留的信息也就越多. 不严格的来一句, 一个基集保留下的信息量是每个基保留下的信息量的和.

基于上面的理念, 或者说假设, 我们已经有一种可以有效地找出最优基集的方法了: 贪心算法---先找出保留信息量最大的基向量, 然后是第二大的, 然后然后, 直到找满pp个基向量.

接下来, 将上面的分析用数学语言描述出来.
vv为一个用于变换的基. DD中的某一条记录xxvv上的投影长度(即坐标值)为:

proj(x,v)=vTx||v||proj(x,v)=vTx||v||

假如 vv为单位向量, 则:
proj(x,v)=vTxproj(x,v)=vTx

所以, 为了方便计算, 我们对 vv有了一个约束条件:  vv为单位向量. 这个太好说了, normalize 一下就行了.

于是, 整个DDvv上的投影长度可以打包表示为:XvXv, 其中, XX是一个m×dm×d的矩阵, 每一行是一条记录, mmDD中的记录总数目. 在数据预处理时, 我们先将XX每一列的均值变为0: 先算出每一列的均值, 得到均值向量μμ, 然后从每一条记录xixi中减去μμxixiμxi←xi−μ. 最后用这些预处理后的xixi组成XX.
现在, 我们来计算DDvv上的信息量, 即所有数据在vv上的投影长度的方差:

μ(X,v)=0μ(X,v)=0

info(D,v)=σ2(X,v)=1mi=1m(vTxiμ)2=1m(Xv)TXv=1mvTXTXvinfo(D,v)=σ2(X,v)=1m∑i=1m(vTxi−μ)2=1m(Xv)TXv=1mvTXTXv

仔细看 XTXXTX这个东西, 因为做过均值化处理,  1mXTX1mXTX, 成为了原数据集 DD的协方差矩阵, 用 CC表示. 所以
info(D,v)=σ2(X,v)=vTCvinfo(D,v)=σ2(X,v)=vTCv

这就是我们需要最大化的目标函数. 不过, 再回想一下, 我们之前为了方便计算还加了一个条件进来:  vv是一个单位向量, 即 vTv=1vTv=1. 把这个条件也加到目标函数里去:
f(v)=vTCvλ(vTv1)f(v)=vTCv−λ(vTv−1)

所以, 这才是我们最终需要优化的目标函数.
now, 求使 f(v)f(v)最大的 vvf(v)f(v)取得条件极值的 必要条件为:
(这个矢量函数求偏导的过程类似于神经网络BP算法求偏导过程, 以后在另一篇文章单独推导.)
fv=2Cv2λv=0∂f∂v=2Cv−2λv=0

Cv=λvCv=λv

所以,  vvCC的特征向量. 它保存的信息量为:
info(D,v)=vTCv=vTλv=λvTv=λinfo(D,v)=vTCv=vTλv=λvTv=λ

于是, 奇迹就这么出现了:  信息量保存能力最大的基向量一定是DD的协方差矩阵的特征向量, 并且这个特征向量保存的信息量就是它对应的特征值.

接下来的戏码你们应该都知道了: 用单位正交阵将CC对角化(CC是对称矩阵, 天生如此);特征值降序排列, 以排名前pp个特征值对应的特征向量作为新的基集. (这个做法看起来很自然, 但若细细思量, 会发现这一步是PCA算法里水最深的一步, 至少我现在还没真正理解为何要这么做, 听qw学长说要用什么Rayleigh商).

剩下的问题, 比如降维后损失了多少信息, 也很明白了, 就不多讲了.

(END)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值