Docker 部署tensorflow_model_server过程记录

本文详细记录了使用Docker部署TensorFlow Model Server的过程,包括安装Docker、拉取serving镜像、创建容器、拷贝模型、运行服务、解决GPU版本问题以及加载多模型等步骤。在遇到`libcuda.so.1`错误时,通过添加环境变量和软链接解决了问题。
摘要由CSDN通过智能技术生成

查看CUDA版本:
cat /usr/local/cuda/version.txt

查看文件链接到哪里:
ls -al libcuda.so.1

docker 下 tensorflow_model_server t2t部署
1.安装docker
见菜鸟教程:http://www.runoob.com/docker/docker-tutorial.html
2.下载serving镜像:
docker pull tensorflow/serving:latest-devel(文件较大3G多,下载时间较长)
3.用serving镜像创建容器:

  •  docker run -it -p 9000:9000 tensorflow/serving:latest-devel  --privileged=true(调用GPU)
    

4.将模型拷贝到容器中:(新开个命令窗口)
docker cp [模型文件所在目录] 容器ID:/[容器中目录]
如:

  •  docker cp E:/model/export 0f087sdf8sf:/model  
    

5.容器中运行tensorflow_model_server服务
tensorflow_model_server --port=9000 --model_name=nmt --model_base_path=/model
6.t2t连接

  •   t2t-query-server --server=*.*.*.*:9000 --servable_name=nmt --problem=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值