tensorflow serving部署镜像中的模型多版本控制/指定版本预测
当模型存在多个版本时,可同时加载,并根据需要选择合适模型预测,此时需要配置models.config文件,并指定–model_config_file参数。模型名model和model1下都有4个版本模型,如下图所示。

配置models.config文件,json格式写法:
- config字段,指定具体模型
- base_path表示容器内的模型文件路径,不是本地路径
- specific指定具体要加载的版本号
# 具体的models.config文件
model_config_list: {
config: {
name: "model",
base_path: "/models/model",
model_platform: "tensorflow",
model_version_policy: {
specific: {
versions:1,
versions:2,

本文介绍了如何在TensorFlow Serving中实现模型的多版本控制和指定版本预测。通过配置models.config文件并设置–model_config_file参数,可以加载并选择不同版本的模型进行预测。文中展示了models.config的JSON格式配置示例,并详细说明了如何使用Docker运行tensorflow serving,加载多个模型版本。此外,还提到了docker cp命令的使用技巧。
最低0.47元/天 解锁文章
332

被折叠的 条评论
为什么被折叠?



