墨尘的模型部署4--docker镜像tensorflow serving的多模型多版本控制(四)

本文介绍了如何在TensorFlow Serving中实现模型的多版本控制和指定版本预测。通过配置models.config文件并设置–model_config_file参数,可以加载并选择不同版本的模型进行预测。文中展示了models.config的JSON格式配置示例,并详细说明了如何使用Docker运行tensorflow serving,加载多个模型版本。此外,还提到了docker cp命令的使用技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

tensorflow serving部署镜像中的模型多版本控制/指定版本预测

当模型存在多个版本时,可同时加载,并根据需要选择合适模型预测,此时需要配置models.config文件,并指定–model_config_file参数。模型名model和model1下都有4个版本模型,如下图所示。
在这里插入图片描述
配置models.config文件,json格式写法:

  • config字段,指定具体模型
  • base_path表示容器内的模型文件路径,不是本地路径
  • specific指定具体要加载的版本号
# 具体的models.config文件
model_config_list: {
   
    config: {
   
        name: "model",
        base_path: "/models/model",
        model_platform: "tensorflow",
        model_version_policy: {
   
          specific: {
   
              versions:1,
              versions:2,
              
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值