hist的使用

hist的api参数很多,如果要知道每个含义得一个一个去试,看了doc,这个hist的参数挺多的,api中有个简明的例子,我们使用几个重要的参数即可

函数签名

 

matplotlib.pyplot.hist(
x, bins=10, range=None, normed=False, 
weights=None, cumulative=False, bottom=None, 
histtype=u'bar', align=u'mid', orientation=u'vertical', 
rwidth=None, log=False, color=None, label=None, stacked=False, 
hold=None, **kwargs)

 

x : (n,) array or sequence of (n,) arrays

这个参数是指定每个bin(箱子)分布的数据,对应x轴

bins : integer or array_like, optional

这个参数指定bin(箱子)的个数,也就是总共有几条条状图

normed : boolean, optional

If True, the first element of the return tuple will be the counts normalized to form a probability density, i.e.,n/(len(x)`dbin)

这个参数指定密度,也就是每个条状图的占比例比,默认为1

color : color or array_like of colors or None, optional

这个指定条状图的颜色

我们绘制一个10000个数据的分布条状图,共50份,以统计10000分的分布情况

 

"""
Demo of the histogram (hist) function with a few features.

In addition to the basic histogram, this demo shows a few optional features:

    * Setting the number of data bins
    * The ``normed`` flag, which normalizes bin heights so that the integral of
      the histogram is 1. The resulting histogram is a probability density.
    * Setting the face color of the bars
    * Setting the opacity (alpha value).

"""
import numpy as np
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt


# example data
mu = 100 # mean of distribution
sigma = 15 # standard deviation of distribution
x = mu + sigma * np.random.randn(10000)

num_bins = 50
# the histogram of the data
n, bins, patches = plt.hist(x, num_bins, normed=1, facecolor='blue', alpha=0.5)
# add a 'best fit' line
y = mlab.normpdf(bins, mu, sigma)
plt.plot(bins, y, 'r--')
plt.xlabel('Smarts')
plt.ylabel('Probability')
plt.title(r'Histogram of IQ: $\mu=100$, $\sigma=15$')

# Tweak spacing to prevent clipping of ylabel
plt.subplots_adjust(left=0.15)
plt.show()


 

 

  • 10
    点赞
  • 14
    收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页
评论

打赏作者

杨过悔

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值