Fisher准则例题——给定样本数据

已知两类数据:

C 1 : ( 1 , 0 ) ⊤ , ( 2 , 0 ) ⊤ , ( 1 , 1 ) ⊤ C_1: (1,0)^\top, (2,0)^\top, (1,1)^\top C1:(1,0),(2,0),(1,1),

C 2 : ( − 1 , 0 ) ⊤ , ( 0 , 1 ) ⊤ , ( − 1 , 1 ) ⊤ C_2: (-1,0)^\top, (0,1)^\top, (-1,1)^\top C2:(1,0),(0,1),(1,1),
利用Fisher线性判别方法判断新样本 ( 1 , 2 ) ⊤ (1,2)^\top (1,2) 属于哪类?(两类均值作为分类阈值点)


解:两类均值分别为:

m 1 = ( 4 3 , 1 3 ) ⊤ m_1 = \left( \frac{4}{3}, \frac{1}{3} \right)^\top m1=(34,31), m 2 = ( − 2 3 , 2 3 ) ⊤ m_2 = \left( -\frac{2}{3}, \frac{2}{3} \right)^\top m2=(32,32)

两类离散度矩阵分别为:

S 1 = ∑ x ∈ X 1 ( x − m 1 ) ( x − m 1 ) ⊤ = 1 3 ( 2 − 1 − 1 2 ) S_1 = \sum\limits_{x \in X_1} (x - m_1)(x - m_1)^\top = \frac{1}{3} \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} S1=xX1(xm1)(xm1)=31(2112)

S 2 = ∑ x ∈ X 2 ( x − m 2 ) ( x − m 2 ) ⊤ = 1 3 ( 2 1 1 2 ) S_2 = \sum\limits_{x \in X_2} (x - m_2)(x - m_2)^\top = \frac{1}{3} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} S2=xX2(xm2)(xm2)=31(2112)

总类内离散度矩阵为:

S w = S 1 + S 2 = 1 3 ( 4 0 0 4 ) S_{\bm w} = S_1 + S_2 = \frac{1}{3} \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} Sw=S1+S2=31(4004)

最优投影方向为:

w = S w − 1 ( m 1 − m 2 ) = 1 4 ( 3 0 0 3 ) ( 6 / 3 − 1 / 3 ) ⊤ = ( 3 2 , − 1 4 ) ⊤ {\bm w} = S_{\bm w}^{-1}(m_1 - m_2) = \frac{1}{4} \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 6/3 \\ -1/3 \end{pmatrix}^\top = \left( \frac{3}{2}, -\frac{1}{4} \right)^\top w=Sw1(m1m2)=41(3003)(6/31/3)=(23,41)

分类阈值点为:

y o = w ⊤ ( m 1 + m 2 ) / 2 = ( 3 2 , − 1 4 ) ( 1 / 3 1 / 2 ) ⊤ = 3 8 y_o = {\bm w}^\top(m_1 + m_2)/2 = \left( \frac{3}{2}, -\frac{1}{4} \right) \begin{pmatrix} 1/3 \\ 1/2 \end{pmatrix}^\top = \frac{3}{8} yo=w(m1+m2)/2=(23,41)(1/31/2)=83

新样本在 w {\bm w} w 上的投影为:

y = w ⊤ x ∗ = ( 3 2 , − 1 4 ) ⊤ ( 1 2 ) ⊤ = 1 y = {\bm w}^\top {\bm x}^* = \left( \frac{3}{2}, -\frac{1}{4} \right)^\top \begin{pmatrix} 1 \\ 2 \end{pmatrix}^\top = 1 y=wx=(23,41)(12)=1

由于 y > y 0 y > y_0 y>y0,新样本属于 C 1 C_1 C1 类。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值