已知两类数据:
C 1 : ( 1 , 0 ) ⊤ , ( 2 , 0 ) ⊤ , ( 1 , 1 ) ⊤ C_1: (1,0)^\top, (2,0)^\top, (1,1)^\top C1:(1,0)⊤,(2,0)⊤,(1,1)⊤,
C
2
:
(
−
1
,
0
)
⊤
,
(
0
,
1
)
⊤
,
(
−
1
,
1
)
⊤
C_2: (-1,0)^\top, (0,1)^\top, (-1,1)^\top
C2:(−1,0)⊤,(0,1)⊤,(−1,1)⊤,
利用Fisher线性判别方法判断新样本
(
1
,
2
)
⊤
(1,2)^\top
(1,2)⊤ 属于哪类?(两类均值作为分类阈值点)
解:两类均值分别为:
m 1 = ( 4 3 , 1 3 ) ⊤ m_1 = \left( \frac{4}{3}, \frac{1}{3} \right)^\top m1=(34,31)⊤, m 2 = ( − 2 3 , 2 3 ) ⊤ m_2 = \left( -\frac{2}{3}, \frac{2}{3} \right)^\top m2=(−32,32)⊤
两类离散度矩阵分别为:
S 1 = ∑ x ∈ X 1 ( x − m 1 ) ( x − m 1 ) ⊤ = 1 3 ( 2 − 1 − 1 2 ) S_1 = \sum\limits_{x \in X_1} (x - m_1)(x - m_1)^\top = \frac{1}{3} \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} S1=x∈X1∑(x−m1)(x−m1)⊤=31(2−1−12)
S 2 = ∑ x ∈ X 2 ( x − m 2 ) ( x − m 2 ) ⊤ = 1 3 ( 2 1 1 2 ) S_2 = \sum\limits_{x \in X_2} (x - m_2)(x - m_2)^\top = \frac{1}{3} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} S2=x∈X2∑(x−m2)(x−m2)⊤=31(2112)
总类内离散度矩阵为:
S w = S 1 + S 2 = 1 3 ( 4 0 0 4 ) S_{\bm w} = S_1 + S_2 = \frac{1}{3} \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} Sw=S1+S2=31(4004)
最优投影方向为:
w = S w − 1 ( m 1 − m 2 ) = 1 4 ( 3 0 0 3 ) ( 6 / 3 − 1 / 3 ) ⊤ = ( 3 2 , − 1 4 ) ⊤ {\bm w} = S_{\bm w}^{-1}(m_1 - m_2) = \frac{1}{4} \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 6/3 \\ -1/3 \end{pmatrix}^\top = \left( \frac{3}{2}, -\frac{1}{4} \right)^\top w=Sw−1(m1−m2)=41(3003)(6/3−1/3)⊤=(23,−41)⊤
分类阈值点为:
y o = w ⊤ ( m 1 + m 2 ) / 2 = ( 3 2 , − 1 4 ) ( 1 / 3 1 / 2 ) ⊤ = 3 8 y_o = {\bm w}^\top(m_1 + m_2)/2 = \left( \frac{3}{2}, -\frac{1}{4} \right) \begin{pmatrix} 1/3 \\ 1/2 \end{pmatrix}^\top = \frac{3}{8} yo=w⊤(m1+m2)/2=(23,−41)(1/31/2)⊤=83
新样本在 w {\bm w} w 上的投影为:
y = w ⊤ x ∗ = ( 3 2 , − 1 4 ) ⊤ ( 1 2 ) ⊤ = 1 y = {\bm w}^\top {\bm x}^* = \left( \frac{3}{2}, -\frac{1}{4} \right)^\top \begin{pmatrix} 1 \\ 2 \end{pmatrix}^\top = 1 y=w⊤x∗=(23,−41)⊤(12)⊤=1
由于 y > y 0 y > y_0 y>y0,新样本属于 C 1 C_1 C1 类。