MATLAB概率密度估计有关的函数

参数估计

mle
Maximum likelihood estimates
mle是有偏估计
fitdist
对数据进行概率分布对象拟合
histfit
具有分布拟合的直方图
fitdist和histfit是无偏估计,这两者区别在于histfit直接画出直方图。
支持的分布点这里

load carsmall;
pd = fitdist(MPG,'Normal');
xi = -3:.1:60;
f = pdf(pd,xi);
n = numel(MPG);
nbins = 20;
%% 
figure
h = histogram(MPG,'Normalization','pdf','NumBins',nbins)
hold on
% plot(xi, n*h.BinWidth*f, 'LineWidth',2)
plot(xi, f, 'LineWidth',2)
% title('Miles per Gallon')
xlabel('Miles per Gallon')
ylabel('Probability Density')
box off

%% 
figure
histfit(MPG,nbins,'Normal')
xlabel('Miles per Gallon')
ylabel('Counts')

非参数估计

ksdensity
Kernel smoothing function estimate for univariate and bivariate data
在这里插入图片描述
kde
Kernel density estimate for univariate data
在这里插入图片描述
这两者的区别在于,kde中有个权值,ksdensity可以用于二维数据。Unlike ksdensity, kde does not support boundary correction methods or data censoring.
在这里插入图片描述
在这里插入图片描述

mvksdensity
Kernel smoothing function estimate for multivariate data
mvksdensity用于高维数据。

fitdist和histfit也可以用于核密度估计。histfit直接画出直方图。


%% 
load carsmall;
%% 
pd = fitdist(MPG,'Kernel');
xi = -3:.1:60;
f = pdf(pd,xi);
n = numel(MPG);
nbins = 20;
%% 
figure
h = histogram(MPG,'Normalization','pdf','NumBins',nbins);
hold on
% plot(xi,n*h.BinWidth*f,'LineWidth',2)
plot(xi, f,'LineWidth',2)

% title('Miles per Gallon')
xlabel('Miles per Gallon')
ylabel('Probability Density')
box off

%% 
figure
histfit(MPG,nbins,'Kernel')
xlabel('Miles per Gallon')
ylabel('Count')

在这里插入图片描述
在这里插入图片描述

置信区间

paramci
Confidence intervals for probability distribution parameters

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值