零相位滤波器是实偶函数——傅里叶变换共轭对称性

服了冈萨雷斯,咋能这么瞎掰呢?零相位滤波器的术语不准确,这个解释也是错的。只满足实函数就是零相位滤波器了吗?
在这里插入图片描述

频域共轭对称

对于实信号 x ( t ) x(t) x(t),其傅里叶变换 X ( f ) X(f) X(f) 满足共轭对称性,即 X ( − f ) = X ∗ ( f ) X(-f) = X^*(f) X(f)=X(f)

x ( t ) x(t) x(t) 是一个实信号,其傅里叶变换定义为:

X ( f ) = ∫ − ∞ + ∞ x ( t ) e − j 2 π f t   d t X(f) = \int_{-\infty}^{+\infty} x(t) {\rm e}^{-{\rm j}2\pi ft} \, {\rm d}t X(f)=+x(t)ej2πftdt

由于 x ( t ) x(t) x(t) 是实函数,即 x ( t ) = x ∗ ( t ) x(t) = x^*(t) x(t)=x(t),其中 x ∗ ( t ) x^*(t) x(t) 表示 x ( t ) x(t) x(t) 的复共轭。

现在计算 X ( − f ) X(-f) X(f)

X ( − f ) = ∫ − ∞ + ∞ x ( t ) e j 2 π f t   d t = ∫ − ∞ + ∞ x ∗ ( t ) e − j 2 π ( − f ) t   d t = [ ∫ − ∞ + ∞ x ( t ) e − j 2 π f t   d t ] ∗ = X ∗ ( f ) \begin{aligned} X(-f) &= \int_{-\infty}^{+\infty} x(t) {\rm e}^{{\rm j}2\pi ft} \, {\rm d}t \\ &= \int_{-\infty}^{+\infty} x^*(t) {\rm e}^{-{\rm j}2\pi (-f)t} \, {\rm d}t \\ &= \left[ \int_{-\infty}^{+\infty} x(t) {\rm e}^{-{\rm j}2\pi ft} \, {\rm d}t \right]^* \\ &= X^*(f) \end{aligned} X(f)=+x(t)ej2πftdt=+x(t)ej2π(f)tdt=[+x(t)ej2πftdt]=X(f)

实部和虚部的对称性

  • X ( f ) X(f) X(f) 的实部 X r ( f ) X_r(f) Xr(f) 是偶函数,因为 X r ( − f ) = Re [ X ( − f ) ] = Re [ X ∗ ( f ) ] = X r ( f ) X_r(-f) = \text{Re}[X(-f)] = \text{Re}[X^*(f)] = X_r(f) Xr(f)=Re[X(f)]=Re[X(f)]=Xr(f)
  • X ( f ) X(f) X(f) 的虚部 X i ( f ) X_i(f) Xi(f) 是奇函数,因为 X i ( − f ) = Im [ X ( − f ) ] = Im [ X ∗ ( f ) ] = − X i ( f ) X_i(-f) = \text{Im}[X(-f)] = \text{Im}[X^*(f)] = -X_i(f) Xi(f)=Im[X(f)]=Im[X(f)]=Xi(f)

模和相位的对称性

  • ∣ X ( f ) ∣ |X(f)| X(f) 是偶函数,因为 ∣ X ( − f ) ∣ = ∣ X ∗ ( f ) ∣ = ∣ X ( f ) ∣ |X(-f)| = |X^*(f)| = |X(f)| X(f)=X(f)=X(f)
  • 相位 ∠ X ( f ) \angle X(f) X(f) 是奇函数,因为 ∠ X ( − f ) = ∠ X ∗ ( f ) = − ∠ X ( f ) \angle X(-f) = \angle X^*(f) = -\angle X(f) X(f)=X(f)=X(f)
    在这里插入图片描述

时域共轭对称

共轭对称函数(也称为Hermitian对称)的傅里叶变换是实数函数。具体来说,如果一个连续时间信号 x ( t ) x(t) x(t) 是共轭对称的,即满足条件 x ( t ) = x ∗ ( − t ) x(t) = x^*(-t) x(t)=x(t),其中星号表示复共轭,则其傅里叶变换 X ( f ) X(f) X(f) 将是实数且偶函数。

这个性质可以由傅里叶变换的定义推导出来。对于一个函数 x ( t ) x(t) x(t),其傅里叶变换 X ( f ) X(f) X(f) 定义为:

X ( f ) = ∫ − ∞ + ∞ x ( t ) e − j 2 π f t d t X(f) = \int_{-\infty}^{+\infty} x(t) e^{-j2\pi ft} dt X(f)=+x(t)ej2πftdt

对于共轭对称函数 x ( t ) = x ∗ ( − t ) x(t) = x^*(-t) x(t)=x(t),我们可以将 X ( f ) X(f) X(f) 写作:

X ( f ) = ∫ − ∞ + ∞ x ( t ) e − j 2 π f t d t = ∫ − ∞ + ∞ x ∗ ( − t ) e − j 2 π f t d t X(f) = \int_{-\infty}^{+\infty} x(t) e^{-j2\pi ft} dt = \int_{-\infty}^{+\infty} x^*(-t) e^{-j2\pi ft} dt X(f)=+x(t)ej2πftdt=+x(t)ej2πftdt

通过变量替换 u = − t u = -t u=t,得到:

X ( f ) = ∫ + ∞ − ∞ x ∗ ( u ) e j 2 π f u ( − d u ) = ∫ − ∞ + ∞ x ∗ ( u ) e j 2 π f u d u X(f) = \int_{+\infty}^{-\infty} x^*(u) e^{j2\pi fu} (-du) = \int_{-\infty}^{+\infty} x^*(u) e^{j2\pi fu} du X(f)=+x(u)ej2πfu(du)=+x(u)ej2πfudu

由于 e j 2 π f u e^{j2\pi fu} ej2πfu 的共轭是 e − j 2 π f u e^{-j2\pi fu} ej2πfu,我们可以进一步写成:

X ( f ) = ( ∫ − ∞ + ∞ x ( u ) e − j 2 π f u d u ) ∗ = X ∗ ( f ) X(f) = \left(\int_{-\infty}^{+\infty} x(u) e^{-j2\pi fu} du\right)^* = X^*(f) X(f)=(+x(u)ej2πfudu)=X(f)

这意味着 X ( f ) X(f) X(f) 是它的自己的共轭,即 X ( f ) = X ∗ ( f ) X(f) = X^*(f) X(f)=X(f),这表明 X ( f ) X(f) X(f) 必须是实数。

此外,因为 X ( f ) X(f) X(f) 是实数,它还必须是偶函数,即 X ( f ) = X ( − f ) X(f) = X(-f) X(f)=X(f)。因此,共轭对称函数的傅里叶变换是实数,并且是偶函数。

结论:实数且偶对称的函数的傅里叶变换是实数且偶对称。

这是要求零相位滤波器的长度是奇数的原因,奇数才可以具有圆周偶对称性,保证滤波器是实数。
在这里插入图片描述

h =19

    0.4545    0.3194    0.0474   -0.1094   -0.0540    0.0694    0.0694   -0.0540   -0.10941011

    0.0474    0.3194

在这里插入图片描述

h =15

   0.4000 + 0.0000i   0.2927 - 0.0951i   0.0809 - 0.0588i  -0.0427 + 0.0588i  -0.0309 + 0.0951i610

   0.0000 + 0.0000i  -0.0309 - 0.0951i  -0.0427 - 0.0588i   0.0809 + 0.0588i   0.2927 + 0.0951i
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值