服了冈萨雷斯,咋能这么瞎掰呢?零相位滤波器的术语不准确,这个解释也是错的。只满足实函数就是零相位滤波器了吗?
频域共轭对称
对于实信号 x ( t ) x(t) x(t),其傅里叶变换 X ( f ) X(f) X(f) 满足共轭对称性,即 X ( − f ) = X ∗ ( f ) X(-f) = X^*(f) X(−f)=X∗(f)。
设 x ( t ) x(t) x(t) 是一个实信号,其傅里叶变换定义为:
X ( f ) = ∫ − ∞ + ∞ x ( t ) e − j 2 π f t d t X(f) = \int_{-\infty}^{+\infty} x(t) {\rm e}^{-{\rm j}2\pi ft} \, {\rm d}t X(f)=∫−∞+∞x(t)e−j2πftdt
由于 x ( t ) x(t) x(t) 是实函数,即 x ( t ) = x ∗ ( t ) x(t) = x^*(t) x(t)=x∗(t),其中 x ∗ ( t ) x^*(t) x∗(t) 表示 x ( t ) x(t) x(t) 的复共轭。
现在计算 X ( − f ) X(-f) X(−f):
X ( − f ) = ∫ − ∞ + ∞ x ( t ) e j 2 π f t d t = ∫ − ∞ + ∞ x ∗ ( t ) e − j 2 π ( − f ) t d t = [ ∫ − ∞ + ∞ x ( t ) e − j 2 π f t d t ] ∗ = X ∗ ( f ) \begin{aligned} X(-f) &= \int_{-\infty}^{+\infty} x(t) {\rm e}^{{\rm j}2\pi ft} \, {\rm d}t \\ &= \int_{-\infty}^{+\infty} x^*(t) {\rm e}^{-{\rm j}2\pi (-f)t} \, {\rm d}t \\ &= \left[ \int_{-\infty}^{+\infty} x(t) {\rm e}^{-{\rm j}2\pi ft} \, {\rm d}t \right]^* \\ &= X^*(f) \end{aligned} X(−f)=∫−∞+∞x(t)ej2πftdt=∫−∞+∞x∗(t)e−j2π(−f)tdt=[∫−∞+∞x(t)e−j2πftdt]∗=X∗(f)
实部和虚部的对称性
- X ( f ) X(f) X(f) 的实部 X r ( f ) X_r(f) Xr(f) 是偶函数,因为 X r ( − f ) = Re [ X ( − f ) ] = Re [ X ∗ ( f ) ] = X r ( f ) X_r(-f) = \text{Re}[X(-f)] = \text{Re}[X^*(f)] = X_r(f) Xr(−f)=Re[X(−f)]=Re[X∗(f)]=Xr(f)。
- X ( f ) X(f) X(f) 的虚部 X i ( f ) X_i(f) Xi(f) 是奇函数,因为 X i ( − f ) = Im [ X ( − f ) ] = Im [ X ∗ ( f ) ] = − X i ( f ) X_i(-f) = \text{Im}[X(-f)] = \text{Im}[X^*(f)] = -X_i(f) Xi(−f)=Im[X(−f)]=Im[X∗(f)]=−Xi(f)。
模和相位的对称性
- 模 ∣ X ( f ) ∣ |X(f)| ∣X(f)∣ 是偶函数,因为 ∣ X ( − f ) ∣ = ∣ X ∗ ( f ) ∣ = ∣ X ( f ) ∣ |X(-f)| = |X^*(f)| = |X(f)| ∣X(−f)∣=∣X∗(f)∣=∣X(f)∣。
- 相位
∠
X
(
f
)
\angle X(f)
∠X(f) 是奇函数,因为
∠
X
(
−
f
)
=
∠
X
∗
(
f
)
=
−
∠
X
(
f
)
\angle X(-f) = \angle X^*(f) = -\angle X(f)
∠X(−f)=∠X∗(f)=−∠X(f)。
时域共轭对称
共轭对称函数(也称为Hermitian对称)的傅里叶变换是实数函数。具体来说,如果一个连续时间信号 x ( t ) x(t) x(t) 是共轭对称的,即满足条件 x ( t ) = x ∗ ( − t ) x(t) = x^*(-t) x(t)=x∗(−t),其中星号表示复共轭,则其傅里叶变换 X ( f ) X(f) X(f) 将是实数且偶函数。
这个性质可以由傅里叶变换的定义推导出来。对于一个函数 x ( t ) x(t) x(t),其傅里叶变换 X ( f ) X(f) X(f) 定义为:
X ( f ) = ∫ − ∞ + ∞ x ( t ) e − j 2 π f t d t X(f) = \int_{-\infty}^{+\infty} x(t) e^{-j2\pi ft} dt X(f)=∫−∞+∞x(t)e−j2πftdt
对于共轭对称函数 x ( t ) = x ∗ ( − t ) x(t) = x^*(-t) x(t)=x∗(−t),我们可以将 X ( f ) X(f) X(f) 写作:
X ( f ) = ∫ − ∞ + ∞ x ( t ) e − j 2 π f t d t = ∫ − ∞ + ∞ x ∗ ( − t ) e − j 2 π f t d t X(f) = \int_{-\infty}^{+\infty} x(t) e^{-j2\pi ft} dt = \int_{-\infty}^{+\infty} x^*(-t) e^{-j2\pi ft} dt X(f)=∫−∞+∞x(t)e−j2πftdt=∫−∞+∞x∗(−t)e−j2πftdt
通过变量替换 u = − t u = -t u=−t,得到:
X ( f ) = ∫ + ∞ − ∞ x ∗ ( u ) e j 2 π f u ( − d u ) = ∫ − ∞ + ∞ x ∗ ( u ) e j 2 π f u d u X(f) = \int_{+\infty}^{-\infty} x^*(u) e^{j2\pi fu} (-du) = \int_{-\infty}^{+\infty} x^*(u) e^{j2\pi fu} du X(f)=∫+∞−∞x∗(u)ej2πfu(−du)=∫−∞+∞x∗(u)ej2πfudu
由于 e j 2 π f u e^{j2\pi fu} ej2πfu 的共轭是 e − j 2 π f u e^{-j2\pi fu} e−j2πfu,我们可以进一步写成:
X ( f ) = ( ∫ − ∞ + ∞ x ( u ) e − j 2 π f u d u ) ∗ = X ∗ ( f ) X(f) = \left(\int_{-\infty}^{+\infty} x(u) e^{-j2\pi fu} du\right)^* = X^*(f) X(f)=(∫−∞+∞x(u)e−j2πfudu)∗=X∗(f)
这意味着 X ( f ) X(f) X(f) 是它的自己的共轭,即 X ( f ) = X ∗ ( f ) X(f) = X^*(f) X(f)=X∗(f),这表明 X ( f ) X(f) X(f) 必须是实数。
此外,因为 X ( f ) X(f) X(f) 是实数,它还必须是偶函数,即 X ( f ) = X ( − f ) X(f) = X(-f) X(f)=X(−f)。因此,共轭对称函数的傅里叶变换是实数,并且是偶函数。
结论:实数且偶对称的函数的傅里叶变换是实数且偶对称。
这是要求零相位滤波器的长度是奇数的原因,奇数才可以具有圆周偶对称性,保证滤波器是实数。
h =
列 1 至 9
0.4545 0.3194 0.0474 -0.1094 -0.0540 0.0694 0.0694 -0.0540 -0.1094
列 10 至 11
0.0474 0.3194
h =
列 1 至 5
0.4000 + 0.0000i 0.2927 - 0.0951i 0.0809 - 0.0588i -0.0427 + 0.0588i -0.0309 + 0.0951i
列 6 至 10
0.0000 + 0.0000i -0.0309 - 0.0951i -0.0427 - 0.0588i 0.0809 + 0.0588i 0.2927 + 0.0951i