贝尔(B)是“声强级”的单位,即把相对于基准声强的比值按照对数划分的等级。这个单位是以发明电话的亚历山大·格拉汉姆·贝尔的名字命名的。客观声强增大10倍,人的主观感觉增大1倍;客观声强增大100倍,人的主观感觉只增大2倍。
在实际应用中发现,贝尔这个单位偏大,所以产生了更小的十分之一级单位,即 deciBel。英语中 deci 表示十分之一,deciBel 表示“十分之一贝尔”,英文缩写为“dB”,中文名称是“分贝”。
1 dB = 1 10 B 1 \text{dB} = \frac{1}{10} \text{B} 1dB=101B
有意思的是,1dB 正好是人耳的听觉门限,也是标准电话线上 1km 的衰减。
dB 的定义
分贝表示的是两个比值的对数关系,定义如下:
dB ≜ 10 lg x 1 x 2 \text{dB} \triangleq 10 \lg \frac{x_1}{x_2} dB≜10lgx2x1
其中, x 1 / x 2 x_1 / x_2 x1/x2可以是功率之比、能量之比、幅度平方之比。
分贝的定义还可以是如下形式:
dB ≜ 20 lg x 1 x 2 \text{dB} \triangleq 20 \lg \frac{x_1}{x_2} dB≜20lgx2x1
其中, x 1 / x 2 x_1 / x_2 x1/x2可以是电流之比、电压之比、幅度之比。
上面这两种定义其实是等价的:dB 定义前取 10,表明参与相比的两个物理量暗含了平方关系,比如功率暗含了电流平方或者电压平方的关系;否则,dB 定义前取 20。
dB 的优点
- 压缩数值范围:用 dB 来表示物理量,最大的优点就是动态范围宽,可以“一视同仁”地观测到数据在不同区间的变化规律。
信号的幅度变化可能非常大,从微弱的噪声到强烈的信号。使用线性尺度表示时,数值范围会很广,不便于观察和处理。分贝通过对数转换,将大范围数值压缩到较小的区间,便于在同一图表中展示和比较。 - 噪声通常比信号弱得多,用分贝表示可以清晰展示噪声水平及其对信号的影响。信噪比是信号处理中的重要指标,用分贝表示方便计算和比较。
- 简化计算:在级联系统中,总增益是各级增益的乘积。使用分贝,总增益可以直接相加,简化了计算过程。
最常见的 dB 值就是 0dB 和 3dB,0dB 表示功率相同,3dB 表示半功率。3dB表示信号功率增加一倍或衰减一半。
这样分贝曲线很容易观察旁瓣的衰减,虽然这种图在信号处理中很常见,但是没有出现在数字图像处理中,我准备引入数字图像处理中,刚开始看不习惯,看得多了习惯了。