xception

inception 就是将之前的卷积层的叠加,变成了inception module的叠加, 以求用更少的参数,提取出更丰富的特征。

文章分析了以往的inception 模型,都是先进行1x1的卷积,映射到3-4个不同的维度,这相当于提取cross channel correlation ,然后再进行3x3,5x5的卷积,为的是提取spatial correlations。作者提出了一个问题,能不能将这二者完全分开?cross-channel correlations and spatial correlations can be mapped completely separately?

inception 和 depthwise separable convolution的区别

1.inception module是先做1x1卷积,再做空间上的3x3,5x5的卷积,而depthwise separable 卷积则是相反的。
2. 有没有非线性变换,inception 的每一种卷积后面都跟的有relu,但是depthwise 后面没有非线性变换。

depthwise separable convolution,其实就是将传统的卷积操作分成两步,假设原来是3*3的卷积,

  • depthwise convolution
    先用M个3*3卷积核一对一卷积输入的M个feature map,不求和,生成M个结果;
  • pointwise convolution
    然后用N个1*1的卷积核正常卷积前面生成的M个结果,求和,最后生成N个结果在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值