寒假PyTorch工具第十四天

课程记录

gpu的使用和PyTorch 常见报错

 

 


课程代码

参看: https://blog.csdn.net/huxw_magus/article/details/108024494

https://blog.csdn.net/huxw_magus/article/details/108061775

感谢~

# -*- coding: utf-8 -*-

import os
import numpy as np
import torch

# ========================== 选择 gpu
# flag = 0
flag = 1
if flag:
    gpu_id = 0
    gpu_str = "cuda:{}".format(gpu_id)
    device = torch.device(gpu_str if torch.cuda.is_available() else "cpu")

    x_cpu = torch.ones((3, 3))
    x_gpu = x_cpu.to(device)

    print("x_gpu:\ndevice: {} is_cuda: {} id: {}".format(x_gpu.device, x_gpu.is_cuda, id(x_gpu)))

# ========================== 查看 gpu数量/名称
# flag = 0
flag = 1
if flag:
    device_count = torch.cuda.device_count()
    print("\ndevice_count: {}".format(device_count))

    device_name = torch.cuda.get_device_name(0)
    print("\ndevice_name: {}".format(device_name))

current_device = torch.cuda.current_device()
print("current_device: ", current_device)

torch.cuda.set_device(0)
current_device = torch.cuda.current_device()
print("current_device: ", current_device)


#
cap = torch.cuda.get_device_capability(device=None)
print(cap)
#
name = torch.cuda.get_device_name()
print(name)

is_available = torch.cuda.is_available()
print(is_available)



# ===================== seed
seed = 2
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)

current_seed = torch.cuda.initial_seed()
print(current_seed)

# current_device: 0
# current_device: 0
# (6, 1)
# Quadro
# P2000
# True
# 2


# -*- coding: utf-8 -*-

import os
import numpy as np
import torch
import torch.nn as nn

# ============================ 手动选择gpu
# flag = 0
flag = 1
if flag:
    #gpu_list=[2,3] 如果你的炼丹炉只有一个GPU,这样设置也没有用,当前设备没有2号和3号GPU,pt在运行的时候的device_count属性为0
    gpu_list = [0]#因此要设置为0号,这样device_count属性才会为1
    gpu_list_str = ','.join(map(str, gpu_list))
    os.environ.setdefault("CUDA_VISIBLE_DEVICES", gpu_list_str)
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


# ============================ 依内存情况自动选择主gpu
# flag = 0
flag = 1
if flag:
    def get_gpu_memory():
        import platform
        if 'Windows' != platform.system():
            import os
            os.system('nvidia-smi -q -d Memory | grep -A4 GPU | grep Free > tmp.txt')
            memory_gpu = [int(x.split()[2]) for x in open('tmp.txt', 'r').readlines()]
            os.system('rm tmp.txt')
        else:
            memory_gpu = False
            print("显存计算功能暂不支持windows操作系统")
        return memory_gpu


    gpu_memory = get_gpu_memory()#这里是获取所有GPU的剩余内存
    if not gpu_memory:
        print("\ngpu free memory: {}".format(gpu_memory))#然后打印出来
        gpu_list = np.argsort(gpu_memory)[::-1]

        gpu_list_str = ','.join(map(str, gpu_list))
        os.environ.setdefault("CUDA_VISIBLE_DEVICES", gpu_list_str)#这里是把剩余内存最多的GPU做为主GPU
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


class FooNet(nn.Module):
    def __init__(self, neural_num, layers=3):
        super(FooNet, self).__init__()
        self.linears = nn.ModuleList([nn.Linear(neural_num, neural_num, bias=False) for i in range(layers)])

    def forward(self, x):

        print("\nbatch size in forward: {}".format(x.size()[0]))#观察每个forward的batchsize大小
        #注意,这里是传入的batchsize经过分发后的数量,所以应该是原batchsize除以GPU的数量
        #这里的 batch_size = 16,如果有device_count=1,这里应该是16,如果是device_count=2,这里应该是8.
        for (i, linear) in enumerate(self.linears):
            x = linear(x)
            x = torch.relu(x)
        return x


if __name__ == "__main__":

    batch_size = 16

    # data
    inputs = torch.randn(batch_size, 3)
    labels = torch.randn(batch_size, 3)

    inputs, labels = inputs.to(device), labels.to(device)#把输入和标签放到指定的device中,device根据上面的代码是优先GPU的。

    # model
    net = FooNet(neural_num=3, layers=3)
    net = nn.DataParallel(net)#对模型进行包装,使得模型具有并行分发运行的能力,让模型能把一个batchsize的数据分发到不同GPU上进行运算
    net.to(device)

    # training
    for epoch in range(1):

        outputs = net(inputs)

        print("model outputs.size: {}".format(outputs.size()))

    print("CUDA_VISIBLE_DEVICES :{}".format(os.environ["CUDA_VISIBLE_DEVICES"]))
    print("device_count :{}".format(torch.cuda.device_count()))

#查询当前gpu内存剩余
def get gpu memory(): 
	import os os.system('nvidia -smi -g -d Memory | grep -A4 GPU | grep Free>tmp. txt')
	memory_gpu=[int(x.split())[2]) for x in open(' tmp. txt','r'). readlines()]
	os.system('rm tmp. txt')
	return memory_gpu
	
# =================================== 多gpu 加载
# flag = 0
flag = 1
if flag:

    net = FooNet(neural_num=3, layers=3)

    path_state_dict = "./model_in_multi_gpu.pkl"
    state_dict_load = torch.load(path_state_dict, map_location="cpu")
    print("state_dict_load:\n{}".format(state_dict_load))

    # net.load_state_dict(state_dict_load)

    # remove module.
    from collections import OrderedDict

    new_state_dict = OrderedDict()
    for k, v in state_dict_load.items():
        namekey = k[7:] if k.startswith('module.') else k
        new_state_dict[namekey] = v
    print("new_state_dict:\n{}".format(new_state_dict))

    net.load_state_dict(new_state_dict)
   

 

 


作业

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值