白话文讲计算机视觉-第九讲-霍夫变换之直线检测

文章介绍了霍夫变换的概念,从直角坐标系到极坐标的转换,以及如何在极坐标霍夫空间中检测直线。通过实例展示了如何运用霍夫变换进行直线检测,包括边缘检测、参数设置和Python代码实现。最后提到了霍夫变换也可用于检测圆形。
摘要由CSDN通过智能技术生成

        霍夫变换是1962年由霍夫发明的一种检测图像中直线、圆等形状的方法。后来1972年经过Richard O. Duda和Peter E. Hart改进,形成了今天的霍夫变换算法。

        今天我就带大家了解了解霍夫变换之直线检测是怎么特么的一回事。

1.霍夫变换

        说到霍夫变换,首先就得说说坐标系的事情,虽然这都是初、高中的知识了,但经过大学几年的洗刷,不知道各位还能记住多少。为了使大家的远古记忆觉醒,我就领大家回忆回忆!

        首先是直线的直角坐标系方程(以x,y为坐标轴),y=k*x+b,不知道还记不记得?k是斜率,b是直线与y轴的交点,x、y是变量,如图1所示:

图1

        如果我们已知图像上面任意两个点,系数k,b就能够确定,那么方程就可以写成图2的形式。

 图2

        我们确定了k,b之后得到(k1,b1),把它作为一个点的位置,画到另外一个以k,b为坐标轴的直角坐标系中,我们就会得到图3,图3的直角坐标系我们就称为霍夫空间。

 图3

        假定霍夫空间中有一条线,它的方程为b=-x3*k+y3,也就是y3=k*x3+b。那么它对应的x,y直角坐标系就是一个点(x3,y3),如图4。反过来也可以说,直角坐标系中的一个点,就是霍夫空间中的一条直线。

 图4

        霍夫空间有一个定理:假定直角坐标系有N个点,如果这N个点能够在直角坐标系中连成一条直线,那么它们在霍夫空间中就会交于一点。

        假如N=3,有三个点,分别是(1,2),(2,4),(3,6),这三个点在直角坐标系中可以连成一条直线y=2*x,我们看图5,他们在霍夫空间中肯定会交于一点。

 图5

        但是在我们计算机视觉里面,很少有人使用直角坐标系来解决问题,而使用极坐标。其原因是当直角坐标系的直线垂直于x轴时,k为无穷大。这很难在计算机中表示,使用极坐标就能够很好的解决这个问题。极坐标方程如图6所示,ρ代表长度,θ代表角度。这个怎么来的呢,假如我们有一点(x4,y4),它的极坐标求法看图7,一下就明白了。

图6

 图7

        直角坐标系的一点(x4,y4),对应极坐标系下的一条正弦曲线ρ4=x4*cosθ4+y4*sinθ4,我们称这个极坐标系为“极坐标霍夫空间”,盗用别人一张图:

图8

        我们根据上面的原理,直角坐标系有N个点,如果这N个点能够在直角坐标系中连成一条直线,那么它们在霍夫空间中肯定会交于一点。在“极坐标霍夫空间”中也是一样,只是变为曲线交于一点,如图8所示。

        这样,我们就把直角坐标系的点,变换到极坐标霍夫空间中了。

2.直线检测

        我们想象一下,如图8所示,如果有三个点,这三个点在霍夫空间的曲线是交于一点的,那么三个点肯定在一条直线上。我们通过这个原理就可以对直线进行检测了。

        首先我们第一步需要把一张图的边缘给勾勒出来,比如使用canny边缘检测算法。

        接下来,我们来检测边缘中那些是直线。为了简化问题,我们拿一条直线作为边缘来举例。这条直线如图9所示,

  1. 将空间量化成许多小格,绿色的字代表X,Y坐标。黑色为边缘点,是由8个像素点组成。白色为非边缘点(在这里我们不予考虑)

9

        2. 假设我们的像素分辨率为1,θ变换角度变换的分辨率为45°,那么我们就对全部8个黑色的点进行极坐标霍夫变换, 变换后我们会得到8条曲线,如第一条曲线是ρ=cosθ+8*sinθ,接下来我们根据曲线求θ=0、45、90、135、180° 的ρ值,用公式ρ=x*cosθ+y*sinθ计算,一共8*5=40个数。计算结果如图10所示(横向代表5个角度,纵向代表从(1,8)到(8,1)的8个像素点,值为ρ

图10

        3. 计算完成后,我们发现θ=45°时候,ρ=6.3640数目最多,为8个,别的θ对应的ρ值数目均小于8个,因此,直线的极坐标方程为 6.3640=x*cos45°+y*sin45°,到此该直线方程就求出来了。我们换算成直角坐标系,在画出线段来即可。

3.一个实例

        举个例子,我们图11(a)是一张原图,我们通过第五节讲过的canny算法,把边缘勾勒出来,如图9(b)所示:

白话文讲计算机视觉-第五讲-canny边缘检测算法_小木希望学园的博客-CSDN博客

图11

        接下来,我们通过一条python语句来进行霍夫变换直线检测:

lines=cv2.HoughLinesP(edges, rho, theta, threshold, np.array([]), min_line_length, max_line_gap)

        我们需要在找到一个边缘图中值为1的点(X1,Y1)(0为背景,1为边缘),设定像素分辨率为rho,也就是说我们沿着某一个方向(可以是0°,±45°,±90°,180°等等),一次走一个格子,一直走下去,看看能不能和这个(X1,Y1)点连成一条直线。

        那么我们沿着某一个方向怎么确定呢,很简单,再设定一个角度分辨率theta,就是我们可以沿着哪一个方向的角度行走,如果为1的话,走的方向可以是(0,1,2,3,。。。,180度)。

        我们继续设定一个参数threshold——检测一条直线所需最少的交点,假如我们设定该值为20,我们沿着这个角度一直往前走,走20个点之后,我们如果发现20个点在该方向处的极坐标ρ值都与(X1,Y1)相同,那么我们就认为它是一条直线,如果没到20个点值就变了,就不认为这是一条直线了。

        上述情况中,max_line_gap这个值为1,也就是走一个格子检测一下是否有极坐标值交点(ρ值相同),如果要是max_line_gap这个值不为1,为5,那就是说,我沿着这个角度一直往前走,先走5个点,如果这5个点中有2个点和(X1,Y1)的ρ值相同,那么就可以认为是一条直线,然后我们接着往下面走,再走5个点走到第10个点后,里面需要再有一个点和(X1,Y1)的ρ值相同;再走5个点到第15个点,里面需要再有一个点和(X1,Y1)的ρ值相同,依次类推继续前进,直到有20个点和(X1,Y1)的ρ值相同即可认为是一条直线;当小于20个点时,走5个点之后没有点相交就不认为是直线。

        我们把所有的边缘点进行霍夫变换,把所有的角度都给遍历了,我们就会得到一堆线段。

        我们设定变量min_line_length,表示组成一条直线的最少点的数量。比如我们设定和threshold相同或者小于threshold,那么我们就不舍弃任何一个点。如果设定比threshold大,如为50,就舍弃一些直线像素点数小于50个的就不要了。

        最后线段的坐标保存在line中。

        我们的参数设定为:

    rho = 1  # 像素分辨率(1 pix)

    theta = np.pi / 180  # 角度分辨率(1度)

    threshold = 20  # 检测一条直线所需最少的交点

    min_line_length = 50  # 组成一条直线的最少点的数量

    max_line_gap = 20  # 能被认为在一条直线上的亮点的最大距离

最终获得的图像如图12所示,检测的线段效果还行,有些遗漏,有些误检,这需要慢慢调参数来优化。

图12

以下是python的代码:

# 导入类库
import cv2
import numpy as np

if __name__ == '__main__':
    # 读入灰度图片
    img = cv2.imread("linetest.jpg", 0)
    # 显示图片
    cv2.imshow('orgin', img)
    # 进行边缘检测,设定高低阈值分别为50,75。后把canny边缘图片保存到硬盘,名字为canny.jpg
    edges = cv2.Canny(img, 50, 75)
    # 保存图片
    cv2.imwrite("canny.jpg", edges)
    # 显示边缘图片
    cv2.imshow("canny", edges)
    # 输入霍夫变换参数
    rho = 1  # 像素分辨率(1 pix)
    theta = np.pi / 180  # 角度分辨率(1度)
    threshold = 20  # 检测一条直线所需最少的交点
    min_line_length = 50  # 组成一条直线的最少点的数量
    max_line_gap = 20  # 能被认为在一条直线上的亮点的最大距离
    # 创建一张新图
    line_image = cv2.imread("linetest.jpg")
    # 霍夫检测函数
    lines = cv2.HoughLinesP(edges, rho, theta, threshold, np.array([]), min_line_length, max_line_gap)
    # 把线段画到line_image上面
    for line in lines:
        for x1, y1, x2, y2 in line:
            cv2.line(line_image, (x1, y1), (x2, y2), (0, 0, 255), 5)  # 5代表粗细
    # 显示直线检测图片
    cv2.imshow("Hough", line_image)
    # 保存图片
    cv2.imwrite("Hough.jpg", line_image)
    # 按任意键退出
    cv2.waitKey()
    cv2.destroyAllWindows()

PS:直线检测是所有的点在极坐标空间交于一点,我们利用同样的方法可以检测圆形,方法是“所有的点到某一定点的距离都是同一个值大家可以自己继续琢磨琢磨看。

霍夫变换直线检测到这里就结束啦,谢谢大家!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值