点群不可约表示的通俗易懂讲解

在大家读化学教材时候,好多人看到点群的不可约表示这块之后,就直接懵B了,根本看不懂。之后就有好多人直接放弃学习了。有人直接和我讲,点群的不可约表示直接到化学之家(https://zh.webqc.org/)查多好?用得着你自己判断吗?听到说这话的人,我十分地火大!(别人吃过饭了,你就不吃了?)

本人认为,做纯理论研究要“直线走路”,绝对不能搞什么“弯道超车”。在我看来弯道超车就是弯!道!翻!车!!!假如人家网站关闭,你是不是就傻了?确实,把点群真正的学明白,天天996,也得1个月的时间,确实耽误写论文,评奖评优。但是,本人对科研的看法是,应该从头开始,直线走路,从最基本的高数搞起,然后物理化学生物都一本本地读。这么一直下去,搞个二三十年。我认为到50多岁时候绝对是大师!直线走路是我绝对遵守的,唯一的准则,只要我活着就不允许破坏。

好了,不多说废话了。首先如果你没有学习过点群的概念的话,请参考南开大学孙宏伟老师的《结构化学》,或者科顿的《CHEMICAL APPLICATIONS OF GROUP THEORY》,至少把对应的点群章节都读完。

接下来说一下什么叫做不可约表示,假如我现在有一个点群,有四个元素:{E, A, B, C},我通过某一个方式给他做变换,变成{E, A’, B’, C’}。其中X’=W-1XW,变换之后,我们的点群中的每一个矩阵都可以变成如图形式:

从图中我们可以看出,我们可以把变换的矩阵进行对角化,每一个对角阵是由一个或多个元素组成的方阵。也就是说我们之前的点群中的每一个元素都可以拆成图片中的这样,且在不同的元素中的每一块方阵的大小是相同的(如A’,B’两个矩阵中的A’1,B’1的矩阵的行列数相同)。

我们把{E, A’, B’, C’}叫做点群的可约表示,也就是说它可以再继续分解成一小块一小块的矩阵。如果是{E1, A’1, B’1, C’1},这样一个小块矩阵的集合,我们就叫做不可约表示,就是它不能再通过任何方式拆成图像中的对角形式了。

讲完不可约表示,我要说一下点群不可约表示的五个最重要的定理,推导过程可以参考科顿的那本书:

(1)    一个点群,它的所有不可约表示的维度的平方等于它的元素个数。

假如我们现在有一个点群是C3v:{E, 2C3, 3σv},它的元素一共有6个,假如它的维度是n,那么l12+l22+…+ln2=6,ln代表的是第n个不可约表示的维度。

(2)    任意一个不可约表示中,所有的元素矩阵的主对角线之和的平方等于其点群的元素个数(例如C3v点群,x(E) 2+2*x(C3) 2+ 3*x(σv)2=6)。

(3)    一个点群的两个不可约表示正交,也就是说,两个表示中的对应元素主对角线之和一一相乘,值为0

C3V

E

2C3

3σv

A1

1

1

1

A2

1

1

-1

E

2

-1

0

         在表格中,第一列代表的是点群名称,之后表示的是不可约表示A1,A2,E。第一行除第一列其它的表示点群中的元素,第二行开始,这些数字表示的是对应的元素不可约表示方阵中的主对角线之和。我们可以尝试把两行的数字一一对应相乘,看看是不是0。

(4)    在给定的点群中,所有元素属于同一个类的(如2C3中的C31,C32)作用相同,矩阵相同。

(5)    点群有几个类,就有几个不可约表示,如果是C3V,很明显3类(6个元素),那么不可约表示的数量就是3,分别为A1,A2,E。

 

讲完了5个定理之后,接下来要讲的是怎么判断点群的不可约表示:

(1)    以C3V:{E, 2C3, 3σv}举例,首先,我们根据定理5可以得知,其共有3个不可约表示,点群中共有6个元素,根据定理1,可以得知每一个不可约表示的维度分别为1,1,2(你们不信自己带入算一下,就一种组合)。

(2)    假设我们的对角线之和全都是1(1,1,1),其中E的对角线之和是不可约表示的维度数(根据定理1可以证明),带入到定理2中。我们会发现满足,那么第一个不可约表示就是(1,1,1)。

(3)    第二个不可约表示为维度是1,那么E是1,接下来我们根据定理3,且很容易得知第二个不可约表示是(1,1,-1)。

(4)    第三个不可约表示维度是2,那么E是2。格局定理三列2个方程组,求解得出第三个不可约表示是(2,-1,0)。

 

求出不可约表示之后,我们要给不可约表示标号,准则为:

(1)    一维不可约表示是A或者B(只要最高的C轴或S轴为1,那么就用A,-1就用B),二维为B,三维为T

(2)    如果其C2或者σv为-1,那么字母后面跟的符号是2。如果其C2或者σv为1,那么字母后面跟的符号是1。

(3)    如果其σh轴为1,就在1后面加一撇’,如果是-1就加两撇’’。

(4)    如果有i元素,是1加g,-1加u。

比如我们C3V的第一个不可约表示全是1,那么肯定是A1;第二个中σv为-1,那么就为A2;第三个E=2,且只有一个直接标注E即可,其它的不用区分了。

之后我们继续拔高一下,我们把每一个元素按照三维的矩阵形式展开:

接下来我们拆解矩阵,变成不可约表示形式:

我们会发现,第一个矩阵是个二维的矩阵,其对角线之和正好为不可约表示的第三个E。第二个矩阵是一维的全是1,对角线之和也当然为1,和我们第一个不可约表示A1是相同的。那么我们就可以认为我们的三维矩阵是一个A1和一个E两个矩阵并排放置得出的。

我们还可以知道,不可约表示A1的矩阵全是1,而我们的y轴不管做哪种群的变换,其值是始终不变的,因此我们可以得知不可约表示A1是一个z形式的。E为二维的不可约表示,对应的是变换x和y(注意没读过点群的人听不懂这句话的),所以E是(x,y)形式的变换。我们可以进一步地拓展表格:

C3V

E

2C3

3σv

表示形式

A1

1

1

1

z

A2

1

1

-1

 

E

2

-1

0

(x,y)

 

还有一个概念是旋转形式R,这个东西我们在化学中是不需要掌握的,所以我也不提了。

         最后,除了移动形式外,还有个叫做基的东西(不是搞基!!!)。一般来说d轨道有5种形式,x^2+y^2,x^2-y^2,z^2,xy,xz,yz(看无机化学)。

         判断方法以C3V点群举例:

(1)    首先,我们先判断E元素(不是不可约表示的E,是E元素,就是我们表格第一行那个),如果说我们进行E变换,那么我们的x,y,z->x,y,z。接下来判断C3,变换为:

 

, z]。σv的变换为:x,y,z->x,-y,z

(2)    我们带入把C3新的x,y,z值带入到x^2+y^2,可以得出其值为1*(x^2+y^2),σv的变换值带入到1*(x^2+y^2),可以得出其值为1*(x^2+y^2),E肯定是x^2+y^2就不用说了。因此x^2+y^2这个基是A1的基,因为其得出的值前面的数值都为1

(3)    同理把所有的基都按照此类方式进行计算就可以得到以下的表格。注意:算E不可约表示的时候,我们一定要记住,他是二维的,所以算出来的结果应该是一个矩阵乘以基,那么我们需要把矩阵的主对角线加和,然后求除值,和表格再对比,最终判断他是哪个不可约表示的基。

C3V

E

2C3

3σv

表示形式

A1

1

1

1

z

x^2+y^2和z^2

A2

1

1

-1

Rz

 

E

2

-1

0

(x,y)和(Rx, Ry)

(x^2-y^2,xy)和(xz,yz)

这样,我们的不可约表示就讲完了,唯一不足是我们的旋转形式没有涉及到,我们如果想求RZ,直接想有一个旋转轴绕着Z轴做旋转,旋转轴上面有个箭头,根据我们的E,C3和σv变换,判断这个箭头经过变换之后是否旋转方向时针变化,不变为1,变了为-1,这样我们就可以判断了。

如果我有什么地方出错了,欢迎大家批评。记住,搞理论学科,一定要直线走路,绝不能拔苗助长,弯道超车。

  • 23
    点赞
  • 44
    收藏
    觉得还不错? 一键收藏
  • 7
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值