最小路径覆盖

(同步个人博客 http://sxysxy.org/blogs/39 到csdn

最小路径覆盖是这样的问题:

给一个有向无环图,使用最少的路径,不重不漏地覆盖图上所有点。

省队集训的时候观神犇的ppt了解到这样一个定理:最小路径覆盖 = 节点数N - 最大匹配。最大匹配是把一个节点拆成两个分属两个集合A,B,对于原图中一条边(u,v)则连接A中u和B中v,最后得到的最大匹配。

But why? 0。0 当时看看大概确实是这么回事,后来也没有练习过这样的题目,就略过了。今天看到hihoCoder发来邮件讲这个(http://hihocoder.com/contest/hiho118/problem/1 ,看了看感觉很赞啊。

对于有向无环图上一条路径,满足起点入度=0,终点出度=0,其余点出度=入度=1。这种情况看起来与二分图匹配是非常相似的。 对于路径a -> b -> c,在其对应二分图里面,就有匹配(A(a), B(b))和(A(b), B(c)) ((A(a)表示集合A中点a,之后同理) ,但是对于一条路径的起点s入度为0,显然意味着在点集合B中s是未被匹配的。现在要求最小路径覆盖,也就等价于期望B中未匹配的点最少,那么就等价于期望B中匹配的点最多,也就是最大匹配。

求最大匹配我就直接用dinic了。代码:

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <list>
#include <vector>
#include <queue>
#include <map>
using namespace std;
#define MAXN 2333
class dinic
{
private:
   bool vis[MAXN];
   int dist[MAXN];
   int cure[MAXN];
   vector<int> G[MAXN];
   struct edge
   {
       int from, to, rem;
   };
   int s, t;
   vector<edge> edges;
public:
    dinic(int fr, int to)
    {
        s = fr;
        t = to;
    }
    void addedge(int u, int v, int c)
    {
        edges.push_back((edge){u, v, c});
        edges.push_back((edge){v, u, 0});
        int k = edges.size();
        G[u].push_back(k-2);
        G[v].push_back(k-1);
    }
    bool bfs()
    {
        memset(vis, 0, sizeof(vis));
        queue<int> q;
        q.push(s);
        vis[s] = true;
        dist[s] = 0;
        while(q.size())
        {
            int c = q.front();
            q.pop();
            for(int i = 0; i < G[c].size(); i++)
            {
                edge &e = edges[G[c][i]];
                if(!vis[e.to] && e.rem > 0)
                {
                    vis[e.to] = true;
                    dist[e.to] = dist[c] + 1;
                    q.push(e.to);
                }
            }
        }
        return vis[t];
    }
    int dfs(int x, int f)
    {
        if(f == 0 || x == t)return f;
        int tot = 0;
        int nt;
        for(int &i = cure[x]; i < G[x].size(); i++)
        {
            edge &e = edges[G[x][i]];
            if(dist[e.to] == dist[x] + 1 && (nt = dfs(e.to, min(f, e.rem))) > 0)
            {
                f -= nt;
                tot += nt;
                e.rem -= nt;
                edges[G[x][i]^1].rem += nt;
                if(f == 0)break;
            }
        }
        return tot;
    }
    int maxf()
    {
        int f = 0;
        while(bfs())
        {
            memset(cure, 0, sizeof(cure));
            f += dfs(s, 0x7fffffff);
        }
        return f;
    }
};

int main()
{
    int n, m;
    scanf("%d %d", &n, &m);
    dinic d(0, 2*n+1);
    while(m--)
    {
        int a, b;
        scanf("%d %d", &a, &b);
        d.addedge(a, b+n, 1);
    }
    for(int i = 1; i <= n; i++)
    {
        d.addedge(0, i, 1);
        d.addedge(i+n, 2*n+1, 1);
    }
    printf("%d\n", n - d.maxf());
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值