SPSS统计学:全距

概念

全距,也被称为极差,是统计学中衡量数据变异程度的一项指标。它代表了一组数据中最大值和最小值之间的差距,计算方式为最大值减去最小值。

用途

全距直观地揭示了总体内数值变化的幅度,或者说是标志值差异的范围,为我们理解数据分布的离散程度提供了重要指标。它就像一个数据集的“伸缩范围”,揭示了数据中数值变化的最大跨度,帮助我们判断数据的集中程度和变异情况。

意义

在统计中,全距常用来刻画一组数据的离散程度,反映的是变量分布的变异范围和离散幅度,在总体中任何两个单位的标准值之差都不能超过全距。全距越大,离散程度越大,反之,离散程度越小。不过,全距只指明了测定值的最大离散范围,而未能利用全部测量值的信息,不能细致地反映测量值彼此相符合的程度。它的优点是计算简单,含义直观,运用方便,但在实际应用中,全距易受极端值的影响。

举例

假设我们有一组数据,表示某个班级学生的身高(单位:厘米):

150,155,160,165,170,175,180,185

找出最大值和最小值:
最大值:185厘米
最小值:150厘米

计算全距:
全距 = 最大值 - 最小值 = 185 - 150 = 35厘米

所以,这组数据的全距是35厘米,意味着这个班级学生的身高范围从150厘米到185厘米,相差35厘米。

全距能够直观地反映数据集中数值变化的范围,但同时也容易受到极端值的影响。

SPSS操作

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

计算程序

FREQUENCIES VARIABLES=身高
  /FORMAT=NOTABLE
  /STATISTICS=RANGE
  /ORDER=ANALYSIS.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

赵庆明老师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值