MIT OpenCourse 18.06 Linear Algebra 5

置换 转置 向量空间R

1 置换

 
上节课最后提到了转置与置换
置换矩阵的本质是对矩阵进行行变换操作
具体可参考第二节笔记的4
那么在这里我们可以利用置换矩阵P
来拓展以下公式A=LU
 
前面几节课中
我们消元的矩阵都是特殊设计的
但正如我们在第二节笔记1.2.2.1中所提到的
我们可能碰到主元为0的情况
这时候就需要我们提前进行行变换
所以对于A=LU
更为通用的写法是
PA=LU
其中P为置换矩阵
用来对A实现换行的操作
若无需换行
则P为单位矩阵
视作不进行任何操作
这种PA=LU的形式是包含行互换的消元
 
对于置换矩阵P
我们可以理解为经过行互换的单位矩阵
所以就像上节课笔记的最后
根据排列组合的思想
可以得到
对于n*n大小的矩阵
一共有n的阶乘种置换矩阵
 
并且置换矩阵具有特殊性质
 

P − 1 = P T \textbf{P}^{-1}=\textbf{P}^T\\ P1=PT

 
由此也能得到另一性质
 

P T × P = I \textbf{P}^T\times \textbf{P}= I PT×P=I

 
别问我这咋证明
我也不会证明
可它就是有这个性质
你们可以自己搜一下具体的证明过程
 

2 转置

 
之前还没讲过转置矩阵
虽然你们应该都会
如果想复习的话的可以看一下
懒得看了直接跳过就好
 
假设我们有矩阵
 

[ 1 3 2 3 4 1 ] \begin{bmatrix} 1&3\\ 2&3\\ 4&1 \end{bmatrix} 124331

 
那么转置的结果就是
 

[ 1 3 2 3 4 1 ] T = [ 1 2 4 3 3 1 ] \begin{bmatrix} 1&3\\ 2&3\\ 4&1 \end{bmatrix}^T= \begin{bmatrix} 1&2&4\\ 3&3&1 \end{bmatrix} 124331T=[132341]

 
这用数学式来表达就是
 

( A i j ) T = A j i (\textbf{A}_{ij})^T=\textbf{A}_{ji} (Aij)T=Aji

 
也就是
A的转置的第i行j列的元素
等于
A的第j行i列的元素
 

3 对称矩阵

3.1 对称矩阵是啥

 
所谓对称矩阵
顾名思义
它是关于主对角线对称的矩阵
比如
 

[ 1 2 3 2 2 4 3 4 3 ] \begin{bmatrix} 1&2&3\\ 2&2&4\\ 3&4&3 \end{bmatrix} 123224343

 
这也就使得它具有性质
 

S = S T \textbf{S}=\textbf{S}^T S=ST

3.2 自己造一个对称矩阵

 
但是有时候我们的矩阵不是方阵
有时候我们的矩阵就是长方形的
就像这样
 

R = [ 1 2 4 3 3 1 ] \textbf{R}= \begin{bmatrix} 1&2&4\\ 3&3&1 \end{bmatrix} R=[132341]

 
长方形的矩阵怎么可能对称!
这种时候
不要悲伤
不要心急
我们可以用这个长方形矩阵自己造一个对称矩阵出来!
因为其实
所有的
 

R T × R \textbf{R}^T\times \textbf{R} RT×R

 
都是对称的!
不信我们试试看
 

R T × R = [ 1 3 2 3 4 1 ] × [ 1 2 4 3 3 1 ] = [ 10 11 7 11 13 11 7 11 17 ] \textbf{R}^T\times \textbf{R}= \begin{bmatrix} 1&3\\ 2&3\\ 4&1 \end{bmatrix}\times \begin{bmatrix} 1&2&4\\ 3&3&1 \end{bmatrix}= \begin{bmatrix} 10&11&7\\ 11&13&11\\ 7&11&17 \end{bmatrix} RT×R=124331×[132341]=1011711131171117

 
请务必在草稿纸上自己写一遍这个过程
然后你就会发现
最终方阵第i行j列的元素和第j行i列的元素
都是由相同的行或者列相乘得来的
 
这么讲可能不是很好理解
所以举例来说
比如最终得到的方阵中第一行第二列的元素11
是由
 

[ 1 3 ] × [ 2 3 ] \begin{bmatrix} 1&3 \end{bmatrix}\times \begin{bmatrix} 2\\ 3 \end{bmatrix} [13]×[23]

 
得来的
而最终得到的方阵中第二行第一列的元素11
是由
 

[ 2 3 ] × [ 1 3 ] \begin{bmatrix} 2&3 \end{bmatrix}\times \begin{bmatrix} 1\\ 3 \end{bmatrix} [23]×[13]

 
得来的
这个 [1 3] 和 [2 3] 各自所在的矩阵其实是原矩阵与其自身的转置
而转置的本质就是行变成列、列变成行
所以最终矩阵的第一行第二列的元素
第二列第一行的元素
对应的就是原矩阵第一行和第二行元素的相乘
只不过有一行进行了转置处理而已
这样就不难理解为什么最终得到的方阵是对称的了
 
所以我们由此可以看出
这样得到的矩阵具有对称性质
并非出于偶然
但我们仍然无法明确的描述这其中的原理
就像刚才
我们只能通过矩阵乘法运算中观察到的运算过程进行理解
但通过这样的方式来描述一种性质显然是不严谨的
那么
我们该如何通过矩阵的语言来描述这样的性质呢?
 
用矩阵的语言描述这个过程之前
我们还需要知道一个性质
就是
 

( A × B ) T = B T × A T (\textbf{A}\times \textbf{B})^T=\textbf{B}^T\times \textbf{A}^T (A×B)T=BT×AT

 
这个公式在MIT的18.06线性代数视频里没有提到如何证明
我在这里贴一下我们课本上的证明过程
感兴趣的可以看一下
 
*****************分界线*****************
 

设 A = ( a i j ) m × n , B = ( b i j ) n × s 则 有 A T = ( a j i ) n × m , B T = ( b j i ) s × n 记 AB = ( c i j ) m × s 则 B T A T = ( d i j ) s × m 与 ( AB ) T = ( c j i ) s × m 同 型 又 因 为 ( AB ) T 的 第 i 行 第 j 列 元 c j i 就 是 AB 的 第 j 行 第 i 列 元 , 所 以 c j i = ∑ k = 1 n a j k b k i 而 B T A T 的 第 i 行 第 j 列 元 为 d i j = ∑ k = 1 n b k i a j k = ∑ k = 1 n a j k b k i 因 此 , c j i = d i j ( i = 1 , 2 , ⋯   , s ; j = 1 , 2 , ⋯   , m ) 故 ( AB ) T = B T A T 设\textbf{A}=(a_{ij})_{m\times n}, \textbf{B}=(b_{ij})_{n\times s}\\\quad\\ 则有\\\quad\\ \textbf{A}^T=(a_{ji})_{n\times m}, \textbf{B}^T=(b_{ji})_{s\times n}\\\quad\\ 记\textbf{AB}=(c_{ij})_{m\times s}\\\quad\\ 则\textbf{B}^T\textbf{A}^T=(d_{ij})_{s\times m}与(\textbf{AB})^T=(c_{ji})_{s\times m}同型\\\quad\\ 又因为(\textbf{AB})^T的第i行第j列元c_{ji}就是\textbf{AB}的第j行第i列元,所以\\\quad\\ c_{ji}\quad=\quad\sum_{k=1}^n a_{jk}b_{ki}\\\quad\\ 而\textbf{B}^T\textbf{A}^T的第i行第j列元为\\\quad\\ d_{ij}\quad=\quad \sum_{k=1}^{n} b_{ki}a_{jk}\quad=\quad \sum_{k=1}^n a_{jk}b_{ki}\\\quad\\ 因此, c_{ji}=d{ij}(i=1,2,\cdots,s;\quad j=1,2,\cdots ,m)\\\quad\\ 故(\textbf{AB})^T=\textbf{B}^T\textbf{A}^T A=(aij)m×n,B=(bij)n×sAT=(aji)n×m,BT=(bji)s×nAB=(cij)m×sBTAT=(dij)s×m(AB)T=(cji)s×m(AB)TijcjiABjicji=k=1najkbkiBTATijdij=k=1nbkiajk=k=1najkbki,cji=dij(i=1,2,,s;j=1,2,,m)(AB)T=BTAT

 
*****************分界线*****************
 
所以
根据这个公式
就可以得到
 

( R T R ) T = R T ( R T ) T = R T R (\textbf{R}^T\textbf{R})^T=\textbf{R}^T(\textbf{R}^T)^T=\textbf{R}^T \textbf{R} (RTR)T=RT(RT)T=RTR

 
也就是说
 

R T R \textbf{R}^T\textbf{R} RTR

 
的转置等于它本身
所以它是对称矩阵!!!
 

4 向量空间R

4.1 向量空间是啥?

4.1.1 数乘和加法
 
要说向量空间
首先我们得说说向量
 
我们平时对向量都进行一些运算
仔细想想
不难发现
我们主要就对向量进行两种运算
也就是
数乘和加法
 
数乘就是
我们拿一个标量去乘以一个向量
比如我们知道向量v
那么我们就可以求出3v
 
加法就是
比如我们知道一个向量v和一个向量w
那么我们就可以求出v+w
 
4.1.2 向量空间
 
ok
知道这些之后我们再来说“向量空间”
“向量”的概念我们都知道
可是它还有个“空间”
这个“空间”的意思就是
一堆向量
一整个空间的向量
但并不是任意向量的组合都能称作空间
空间必须满足一定的规则
必须能够满足加法和数乘运算
必须能进行线性组合
比如在向量空间
 

R 2 R^2 R2

 
里面
这个向量空间里全是二维实向量
比如
 

[ 3 2 ] [ 0 0 ] [ π e ] ⋯ \begin{bmatrix} 3\\ 2 \end{bmatrix} \begin{bmatrix} 0\\ 0 \end{bmatrix} \begin{bmatrix} \pi\\ e \end{bmatrix}\cdots [32][00][πe]

 
我们可以对这些向量进行代数运算
比如我们可以把它们相加
比如
 

[ 3 2 ] + [ π e ] = [ 3 + π 2 + e ] \begin{bmatrix} 3\\ 2 \end{bmatrix}+ \begin{bmatrix} \pi\\ e \end{bmatrix}= \begin{bmatrix} 3+\pi\\ 2+e \end{bmatrix} [32]+[πe]=[3+π2+e]

 
而且这些向量都在x-y平面上有对应的箭头形式
我就不画出来了
特别需要注意的是
 

[ 0 0 ] \begin{bmatrix} 0\\ 0 \end{bmatrix} [00]

 
不指向任何方向
并且没有长度
 
下面是重点!!!
这些二维向量所在的整个平面就叫做
 

R 2 R^2 R2

 
我们可以把它理解为一个平面
也就是x-y平面
但在这里我们又不能按照平面的性质去看待它
我们需要把它考虑成
所有向量组成的向量空间
就比如
如果我去掉这里的
 

[ 0 0 ] \begin{bmatrix} 0\\ 0 \end{bmatrix} [00]

 
这就像x-y平面被扎了一个洞
我们失去了原点
这样就不再是一个向量空间了
因为一个向量空间必须满足
任何数乘和加法(减法视作加法的特殊形式)运算的结果
都还是在这个向量空间内
(这个性质也叫“封闭”)
 
比如我们拿刚才给出的其态向量进行数乘
 

0 × [ 3 2 ] = [ 0 0 ] 0\times \begin{bmatrix} 3\\ 2 \end{bmatrix}= \begin{bmatrix} 0\\ 0 \end{bmatrix} 0×[32]=[00]

 
在去掉原点后
这个数乘运算的结果就不在去除掉原点后的向量空间里了
 
或者我拿刚才给出的其他向量进行加法
 

[ 3 2 ] + [ − 3 − 2 ] = [ 0 0 ] \begin{bmatrix} 3\\ 2 \end{bmatrix}+ \begin{bmatrix} -3\\ -2 \end{bmatrix}= \begin{bmatrix} 0\\ 0 \end{bmatrix} [32]+[32]=[00]

 
同样
去掉原点后
这个加法运算的结果就不在平面内了
 
所以
所有的向量空间必须包含0向量
 
刚才所举例的
 

R 2 R^2 R2

 
只是一个简单的向量空间
其图像也很容易作出来
为了巩固我们对向量空间的认识
我们再来讲一下其他的向量空间
比如
 

R 3 R^3 R3

 
它是由所有三维实向量组成的线性空间
比如这个向量
 

[ 3 2 0 ] \begin{bmatrix} 3\\ 2\\ 0 \end{bmatrix} 320

 
还有更高维度的向量空间
 

R n R^n Rn

 
这个向量空间就很大了
它包含了所有的n维实向量
 

4.2 向量空间的性质

 
首先最重要的
就像刚才讲二维向量空间时所提到的
我们取任意向量相加 结果仍在这个向量空间中
取任意向量进行数乘 结果仍在这个向量空间中
取线性组合也仍在向量空间中
 
由此可见
向量空间最重要的性质就是
在进行加法和数乘运算之后
结果仍在这个向量空间内
 
我们可以举一个反例
还是取刚才的二维向量空间
也就是
 

R 2 R^2 R2

 
我们这次只取x-y平面的第一象限
然后取第一象限中的向量进行加法运算
比如
 

[ 3 2 ] + [ 5 6 ] = [ 8 8 ] \begin{bmatrix} 3\\ 2 \end{bmatrix}+ \begin{bmatrix} 5\\ 6 \end{bmatrix}= \begin{bmatrix} 8\\ 8 \end{bmatrix} [32]+[56]=[88]

 
结果仍在第一象限中
这样看来没什么问题
但对于数乘来说就不一定了
比如
 

( − 5 ) × [ 3 2 ] = [ − 15 − 10 ] (-5)\times \begin{bmatrix} 3\\ 2 \end{bmatrix}= \begin{bmatrix} -15\\ -10 \end{bmatrix} (5)×[32]=[1510]

 
这样得到的结果就在第一象限之外
所以第一象限并不能构成向量空间
因为它对于实数的数乘不是封闭的
 
封闭的意思就是
对一个集合F中的任意元素a和b
其加法和数乘运算的结果仍在集合F内
则称这个集合F对加法和数乘运算封闭
 
因此
我们从这个例子中可以知道
向量空间必须对数乘和加法这两种运算封闭
也就是说
对线性组合封闭
 

4.3 子空间

4.3.1 子空间是啥?
 
我们刚才提到的向量空间
 

R n R^n Rn

 
确实是很重要的向量空间
但是我们更关心这个向量空间内的向量空间
 
这些向量空间满足作为向量空间的规则
也就是对加法和数乘运算封闭
但又无需包含它所在的向量空间内的所有向量
 
我们以二维向量空间为例
那么我们就需要去找到这样一个向量空间
(也就是传说中的子空间)
它是二维向量空间的一部分
但不管对这里面的向量进行加法还是数乘运算
其结果仍在这个向量空间内
 
要找到这个向量空间
首先就需要随便取一个向量
对这个向量进行数乘运算
把它乘以2,乘以0,乘以-1...
然后根据向量空间的性质
这样所得到的所有结果
都应该在这个向量空间内
动手画画图就不难发现
这些所有的向量
组成了一条直线!!!
也就是说这条直线上的所有向量
都对数乘运算封闭
那么这个直线是不是就是我们要找的向量空间呢?
 
根据向量空间的性质
为了确定它是不是我们要找的那个向量空间
我们还需要检验这个向量空间是否对加减运算封闭
这是显然成立的!
我们用这个直线上的任意向量
与任意的另一个向量进行加减运算
所得到的结果仍在这条直线上
 
所以
这条二维向量空间内的直线对加减和数乘运算封闭
这就是我们要找的子空间
 
4.3.2 子空间都有哪些
 
但不是所有直线都是二维向量空间的子空间!
你可以自己在x-y平面上画一条不过原点的直线
再按照刚才的步骤分别检验
这条直线是否对加减和数乘这两种运算封闭
你就会发现
在二维向量空间内
只有过原点的直线才具有子空间的性质
 
所以我们可以进一步思考一下
二维向量空间的所有子空间都有哪些?
我直接列出来吧
 

① R 2 本 身 ② 任 意 经 过 [ 0 0 ] 的 直 线 ③ [ 0 0 ] 这 一 个 单 独 的 点 ① R^2本身\\\quad\\ ② 任意经过\begin{bmatrix}0\\0\end{bmatrix}的直线\\\quad\\ ③ \begin{bmatrix}0\\0\end{bmatrix}这一个单独的点 R2[00]线[00]

 
再举个例子
三维向量空间的子空间都有哪些???
 

① R 3 本 身 ② 任 意 经 过 [ 0 0 0 ] 的 平 面 ③ 任 意 经 过 [ 0 0 0 ] 的 直 线 ④ [ 0 0 0 ] 这 一 个 单 独 的 点 ① R^3本身\\\quad\\ ② 任意经过\begin{bmatrix}0\\0\\0\end{bmatrix}的平面\\\quad\\ ③任意经过\begin{bmatrix}0\\0\\0\end{bmatrix}的直线\\\quad\\ ④ \begin{bmatrix}0\\0\\0\end{bmatrix}这一个单独的点 R3000000线000

 
由此我们可以推导出更高维度向量空间的子空间
 
4.3.3 列空间
 
刚才讲的只是子空间的概念
现在我们来看看在实际情况中
子空间是咋得到的
 
我们来看看矩阵是怎么制造子空间的
我们取这个矩阵
 

A = [ 1 3 2 3 4 1 ] \textbf{A}=\begin{bmatrix} 1&3\\ 2&3\\ 4&1 \end{bmatrix} A=124331

 
然后从这个矩阵中构造子空间
其中一个方法就是通过列向量来构造
这是矩阵中很重要的一种子空间
 
观察A的各列可以发现
它们都是三维向量空间里的向量
它们都属于
 

R 3 R^3 R3

 
我们用这些列来构造R的子空间
根据向量空间的性质
这个子空间对线性组合封闭
因此
这两个列向量的所有线性组合
(还记得第一节课笔记里的思考吗!!!)
(还记得第一节课笔记里的思考吗!!!)
(还记得第一节课笔记里的思考吗!!!)
就构成一个子空间
这种子空间也被叫做
列空间!!!
记作
 

C ( A ) {C(A)} C(A)

 
我们所举例的这个C(A)
这个列空间
是一个三维空间内经过原点的一个平面
但如果这两个列向量是共线的
那么它们两个所形成的子空间
将是一条在三维空间内过原点的直线
(还记得第一节课笔记里的思考吗!!!)
(还记得第一节课笔记里的思考吗!!!)
(还记得第一节课笔记里的思考吗!!!)
 
  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值