MIT OpenCourse 18.06 Linear Algebra 1

线性代数的几何表示

1 例一:两个方程两个未知数

 
方程组:
 

{ 2 x − y = 0 − x + 2 y = 3 \begin{cases} 2x-y=0\\ -x+2y=3 \end{cases} {2xy=0x+2y=3

 
矩阵形式:

[ 2 − 1 − 1 2 ] × [ x y ] = [ 0 3 ] \begin{gathered} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \end{gathered}\times \begin{gathered} \begin{bmatrix} x \\ y \end{bmatrix} \end{gathered}= \begin{gathered} \begin{bmatrix} 0 \\ 3 \end{bmatrix} \end{gathered} [2112]×[xy]=[03]

 
简化表示:

A x = b Ax=b Ax=b

 

1.1 行图像

 
方程组按行展开为两个二元一次方程
 

{ 2 x − y = 0 − x + 2 y = 3 \begin{cases} 2x-y=0\\ -x+2y=3 \end{cases} {2xy=0x+2y=3

 
因此求解方法为求出同时满足这两个方程的解
即在平面上找到这两条直线的交点
由此
行图像为:
 

在这里插入图片描述

 
显然
解为(1,2)
 
 

x = 1 y = 2 x=1\\ y=2 x=1y=2

 

1.2 列图像

 
将矩阵初步展开(方程组按列展开)后可表示为:
 

x × [ 2 − 1 ] + y × [ − 1 2 ] = [ 0 3 ] x\times \begin{gathered} \begin{bmatrix} 2 \\ -1 \end{bmatrix} \end{gathered}+ y\times \begin{gathered} \begin{bmatrix} -1\\ 2\end{bmatrix} \end{gathered}= \begin{gathered} \begin{bmatrix} 0\\ 3\end{bmatrix} \end{gathered} x×[21]+y×[12]=[03]

 
(拓展定义)
**线性组合**:通过代入不同的x、y的组合,使如上等式满足
(是我自己bb的定义)
 
其中
 

[ 2 − 1 ] [ − 1 2 ] [ 0 3 ] \begin{gathered} \begin{bmatrix} 2 \\ -1 \end{bmatrix} \end{gathered} \begin{gathered} \begin{bmatrix} -1\\ 2 \end{bmatrix} \end{gathered} \begin{gathered} \begin{bmatrix} 0 \\ 3 \end{bmatrix} \end{gathered} [21][12][03]

 
均视作二维向量
则可得满足上式向量的线性组合为
 

1 × [ 2 − 1 ] + 2 × [ − 1 2 ] = [ 0 3 ] \begin{gathered} 1\times\begin{bmatrix} 2 \\ -1 \end{bmatrix}+ 2\times\begin{bmatrix} -1\\ 2 \end{bmatrix}= \begin{bmatrix} 0 \\ 3 \end{bmatrix} \end{gathered} 1×[21]+2×[12]=[03]

 
由此
列图像为
 

在这里插入图片描述

 
思考:
选取上述等式左边两向量的全部可能出现的线性组合,结果会是什么?
 

x × [ 2 − 1 ] + y × [ − 1 2 ] = ? x\times \begin{gathered} \begin{bmatrix} 2 \\ -1 \end{bmatrix} \end{gathered}+ y\times \begin{gathered} \begin{bmatrix} -1\\ 2\end{bmatrix} \end{gathered}=? x×[21]+y×[12]=

 
答:
在两个二维向量不共线的前提下,这两个二维向量的全部线性组合将填满整个二维平面
 

2 例二:三个方程三个未知数

 
方程组:
 

{ 2 x − y = 0 − x + 2 y − z = − 1 − 3 y + 4 z = 4 \begin{cases} 2x-y=0\\ -x+2y-z=-1\\ -3y+4z=4 \end{cases} 2xy=0x+2yz=13y+4z=4

 
矩阵形式:

[ 2 − 1 0 − 1 2 − 1 − 3 4 0 ] × [ x y z ] = [ 0 − 1 4 ] \begin{gathered} \begin{bmatrix} 2 & -1 &0 \\ -1 & 2 & -1 \\ -3 & 4 & 0 \end{bmatrix} \end{gathered}\times \begin{gathered} \begin{bmatrix} x \\ y \\z \end{bmatrix} \end{gathered}= \begin{gathered} \begin{bmatrix} 0 \\ -1 \\ 4 \end{bmatrix} \end{gathered} 213124010×xyz=014

 
简化表示:

A x = b Ax=b Ax=b

 

2.1 行图像

 
方程组按行展开为三个三元一次方程
 

{ 2 x − y = 0 − x + 2 y − z = − 1 − 3 y + 4 z = 4 \begin{cases} 2x-y=0\\ -x+2y-z=-1\\ -3y+4z=4 \end{cases} 2xy=0x+2yz=13y+4z=4

 
因此求解方法为求出同时满足这三个方程的解
即在平面上找到这三个平面的交点
由此
行图像为:
 

在这里插入图片描述

 
**注意:**
 
对于二维平面内的行图像,我们解起来可能相对容易一些
但是从三维开始,我们可以看到,运算的难度在随着维度的增加而不断增加
而且若要解答更高维度内的方程组,人脑是无法想象四维、五维乃至更高维度的空间的
因此建议采用列图像的思路进行解答
 

2.2 列图像

 
将矩阵初步展开(方程组按列展开)后可表示为:
 

x × [ 2 − 1 − 3 ] + y × [ − 1 2 4 ] + z × [ 0 − 1 0 ] = [ 0 − 1 4 ] x\times \begin{gathered} \begin{bmatrix} 2 \\ -1 \\ -3 \end{bmatrix} \end{gathered}+ y\times \begin{gathered} \begin{bmatrix} -1\\ 2\\4 \end{bmatrix} \end{gathered}+ z\times \begin{gathered} \begin{bmatrix} 0\\ -1\\0 \end{bmatrix} \end{gathered}= \begin{gathered} \begin{bmatrix} 0\\ -1\\ 4 \end{bmatrix} \end{gathered} x×213+y×124+z×010=014

 
则显然可得满足上式向量的线性组合为
 

0 × [ 2 − 1 − 3 ] + 0 × [ − 1 2 4 ] + 1 × [ 0 − 1 4 ] = [ 0 − 1 4 ] \begin{gathered} 0\times\begin{bmatrix} 2 \\ -1 \\-3 \end{bmatrix}+ 0\times\begin{bmatrix} -1\\ 2 \\ 4 \end{bmatrix}+ 1\times\begin{bmatrix} 0\\ -1 \\ 4 \end{bmatrix}= \begin{bmatrix} 0 \\ -1 \\4 \end{bmatrix} \end{gathered} 0×213+0×124+1×014=014

 
由此
列图像为
 

在这里插入图片描述

 
思考:
选取上述等式左边三个向量的全部可能出现的线性组合,结果会是什么?
 

x × [ 2 − 1 − 3 ] + y × [ − 1 2 4 ] + z × [ 0 − 1 0 ] = ? x\times \begin{gathered} \begin{bmatrix} 2 \\ -1 \\ -3 \end{bmatrix} \end{gathered}+ y\times \begin{gathered} \begin{bmatrix} -1\\ 2\\4 \end{bmatrix} \end{gathered}+ z\times \begin{gathered} \begin{bmatrix} 0\\ -1\\0 \end{bmatrix} \end{gathered}=? x×213+y×124+z×010=

 
答:
在三个三维向量不共面的前提下,这三个三维向量的全部线性组合将填满整个三维空间
 

3 思考:对于更高维度的Ax=b,其全部线性组合结果会是什么

 
会是什么呢?
 

4 矩阵与向量的乘法

 
首先构造一个矩阵
 

A = [ 2 5 1 3 ] A = \begin{gathered} \begin{bmatrix} 2 & 5 \\ 1 &3 \end{bmatrix} \end{gathered} A=[2153]

 
再取一个向量
 

x = [ 1 2 ] x = \begin{gathered} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \end{gathered} x=[12]

4.1 法一:列图像的思路

 
将其视作向量的线性组合,矩阵按列展开即可
 

A x = [ 2 5 1 3 ] × [ 1 2 ] = 1 × [ 2 1 ] + 2 × [ 5 3 ] = [ 12 7 ] Ax = \begin{gathered} \begin{bmatrix} 2 & 5 \\ 1 &3 \end{bmatrix} \end{gathered}\times \begin{gathered} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \end{gathered}= 1\times \begin{gathered} \begin{bmatrix} 2 \\ 1 \end{bmatrix} \end{gathered}+ 2\times \begin{gathered} \begin{bmatrix} 5 \\ 3 \end{bmatrix} \end{gathered}= \begin{gathered} \begin{bmatrix} 12 \\ 7 \end{bmatrix} \end{gathered} Ax=[2153]×[12]=1×[21]+2×[53]=[127]

 

4.2 法二:点乘法

 

A x = [ 2 5 1 3 ] × [ 1 2 ] = [ 2 × 1 + 5 × 2 1 × 1 + 3 × 2 ] = [ 12 7 ] Ax = \begin{gathered} \begin{bmatrix} 2 & 5 \\ 1 &3 \end{bmatrix} \end{gathered}\times \begin{gathered} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \end{gathered}= \begin{gathered} \begin{bmatrix} 2\times1+5\times2\\1\times1+3\times2 \end{bmatrix} \end{gathered}= \begin{gathered} \begin{bmatrix} 12 \\ 7 \end{bmatrix} \end{gathered} Ax=[2153]×[12]=[2×1+5×21×1+3×2]=[127]

  • 3
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值