注:本文为 “Indicator Function” 相关文章合辑。
未整理。
示性函数(Indicator Function)
第六五签 于 2024 - 03 - 23 19:58:40 发布
示性函数(Indicator Function),也称为指示函数或特征函数,是数学中一个简单而强大的概念,用于表示某个集合中元素的存在性。给定一个集合 A A A,示性函数定义为一个函数 I A ( x ) I_A(x) IA(x),对于所有的输入 x x x,当 x ∈ A x \in A x∈A 时, I A ( x ) = 1 I_A(x) = 1 IA(x)=1;若 x ∉ A x \notin A x∈/A 时, I A ( x ) = 0 I_A(x) = 0 IA(x)=0。简而言之,示性函数用于指示一个元素是否属于某个特定集合。
数学定义
对于任意集合 A A A 和全集 X X X 的元素 x x x,示性函数 I A : X → { 0 , 1 } I_A : X \to \{0, 1\} IA:X→{0,1} 定义如下:
I A ( x ) = { 1 if x ∈ A 0 otherwise I_A(x)=\begin{cases} 1 & \text{if } x \in A \\ 0 & \text{otherwise} \end{cases} IA(x)={10if x∈Aotherwise
用途
示性函数在数学、统计学、计算机科学等多个领域都有广泛的应用。它们可以用于:
- 集合运算:通过示性函数的代数运算,可以方便地表示集合的并、交、差等运算。
- 概率论:在概率论中,示性函数可以用来描述随机事件的发生情况,进而用于计算事件的概率等。
- 测度论:示性函数在测度论中用于构建简单函数,是测度论与积分理论的基础工具之一。
- 函数逼近:在数值方法和信号处理中,示性函数可以用来构造复杂函数的简单逼近。
示例
假设有一个集合 A = { 2 , 4 , 6 } A = \{2, 4, 6\} A={2,4,6},那么示性函数 I A ( x ) I_A(x) IA(x) 就可以表示为:
I A ( x ) = { 1 if x = 2 , 4 , 6 0 otherwise I_A(x)=\begin{cases} 1 & \text{if } x = 2, 4, 6 \\ 0 & \text{otherwise} \end{cases} IA(x)={10if x=2,4,6otherwise
这意味着,如果我们输入 x = 2 x = 2 x=2,那么 I A ( 2 ) = 1 I_A(2) = 1 IA(2)=1,表示 2 属于集合 A A A;而如果我们输入 x = 3 x = 3 x=3,那么 I A ( 3 ) = 0 I_A(3) = 0 IA(3)=0,表示 3 不属于集合 A A A。
示性函数因其简单和普遍适用性,在数学分析、统计学和应用数学领域中扮演着重要角色。
LaTeX indicator function(指示函数)(\mathbb {1} 不起作用)
五道口纳什于 2017-05-02 22:17:39 发布
问题
在 LaTeX 中,\mathbb
命令用于生成空心字符,但该命令仅对字符有效,对数字无效。
解决方法
1、使用 bbm
包
若要使用 bbm
包来表示指示函数(空心的“1”),可参考以下代码:
\documentclass{article}
\usepackage{bbm}
\begin{document}
$$ \mathbbm{1} $$
\end{document}
2、使用 dsfont
(double stroke)包
通过加载 dsfont
包,也可以实现类似的效果,示例代码如下:
\documentclass{article}
\usepackage{dsfont}
\begin{document}
$$ \mathds{1} $$
\end{document}
3、对大写字母 I
进行空心化
另外,一种较为简单的方式是对大写字母 I
进行空心化处理,使用
I
\mathbb I
I($\mathbb I$
) 来表示。
机器学习公式推导中, I ( ) I() I(), E ( ) E() E(), 这两个符号代表什么意思?
比如: I ( h ( x , z ) = y ) I(h(x,z)=y) I(h(x,z)=y) 是计数吗?那 E ( I ( h ( x , z ) = y ) ) E(I(h(x,z)=y)) E(I(h(x,z)=y)) 代表什么?
小狼
89 人赞
不知道你指的是不是 E [ I ( h ( x , z ) = y ) ] \mathbb{E}[I(h(x,z) = y)] E[I(h(x,z)=y)]. 如果是,机器学习中 I ( ) I() I() 应该指的是 Indicator Function (指示函数), E [ ] \mathbb{E}[] E[] 应该指的是 Expected Value (期望值)。
指示函数 Indicator Function
指示函数是定义在集合
X
X
X 上的函数,用来表示其中有哪些元素属于它的子集
A
A
A。
集合
X
X
X 的子集
A
A
A 的指示函数是函数
I
A
:
X
→
{
0
,
1
}
{\mathbb I}_A : X \to \{0, 1\}
IA:X→{0,1},定义为:
I A ( x ) : = { 1 if x ∈ A 0 if x ∉ A (1) {\mathbb I}_A(x) := \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases} \tag{1} IA(x):={10if x∈Aif x∈/A(1)
I ( h ( x , z ) = y ) {\mathbb I}(h(x,z) = y) I(h(x,z)=y) 用来判断 h ( x , z ) = y h(x,z) = y h(x,z)=y,成立时 I ( h ( x , z ) = y ) {\mathbb I}(h(x,z) = y) I(h(x,z)=y) 为 1,不成立时为 0,即:
I I ( h ( x , z ) = y ) = { 1 h ( x , z ) = y 0 h ( x , z ) ≠ y {\mathbb I}I(h(x,z) = y)= \begin{cases} 1 & h(x,z) = y \\ 0 & h(x,z) \neq y \end{cases} II(h(x,z)=y)={10h(x,z)=yh(x,z)=y
期望值 Expected Value
设
X
X
X 是一个随机变量,具有分别以概率
p
1
,
p
2
,
⋯
,
p
k
p_1, p_2, \cdots , p_k
p1,p2,⋯,pk 出现的有限数量的有限结果
x
1
,
x
2
,
⋯
,
x
k
x_1, x_2, \cdots , x_k
x1,x2,⋯,xk。
X
X
X 的期望值
E
[
X
]
\mathbb{E}[X]
E[X] 定义为:
E [ X ] = ∑ i = 1 k x i p i = x 1 p 1 + x 2 p 2 + ⋯ + x k p k \mathbb{E}[X] = \sum_{i = 1}^{k} x_i p_i = x_1 p_1 + x_2 p_2 + \cdots + x_k p_k E[X]=i=1∑kxipi=x1p1+x2p2+⋯+xkpk
一般都会有下标然后求和求积分什么的,但是题主这里没有,那么 E [ I ( h ( x , z ) = y ) ] \mathbb{E}[{\mathbb I}(h(x,z) = y)] E[I(h(x,z)=y)] 就表示的是 h ( x , z ) = y h(x,z) = y h(x,z)=y 的指示函数的期望值 ~
参考
- 翻译自 Wikipedia https://en.wikipedia.org/wiki/Indicator_function#Definition
- 翻译自 Wikipedia https://en.wikipedia.org/wiki/Expected_value#Finite_case
编辑于 2020 - 07 - 09 16:35
爱做梦的猪
16 人赞
I ( x ) {\mathbb I}(x) I(x) 代表指示函数,数学中,指示函数是定义在某集合 X 上的函数,表示其中有哪些元素属于某一子集 A。概率论有另一意思迥异的特征函数。可以说为真输出 1,为假输出 0。 I ( h ( x , z ) = y ) {\mathbb I}(h(x,z)=y) I(h(x,z)=y) 表示如果 h ( x , z ) = y h(x,z)=y h(x,z)=y,则输出为 1,否则输出为 0。
发布于 2018 - 04 - 02 15:16
指示函数(Indicator Function)
1. 定义
指示函数是用于描述元素是否属于某个集合的二元标量函数,其定义如下:
1
A
(
x
)
=
{
1
,
若
x
∈
A
0
,
若
x
∉
A
\mathbf{1}_A(x) = \begin{cases} 1, & \text{若 } x \in A \\ 0, & \text{若 } x \notin A \end{cases}
1A(x)={1,0,若 x∈A若 x∈/A
此外,也可以通过布尔表达式来表示:
1
(
x
∈
A
)
=
{
1
,
若
x
∈
A
为真
0
,
若
x
∈
A
为假
\mathbf{1}(x \in A) = \begin{cases} 1, & \text{若 } x \in A \text{ 为真} \\ 0, & \text{若 } x \in A \text{ 为假} \end{cases}
1(x∈A)={1,0,若 x∈A 为真若 x∈A 为假
2. 符号表示方法
常见符号系统
符号 | 描述 |
---|---|
1 A ( x ) \mathbf{1}_A(x) 1A(x) | 国际标准化表达 |
I A ( x ) I_A(x) IA(x) | 常见于初级教材 |
3. 应用领域
概率论
在概率论中,指示函数(通常用
1
A
(
x
)
\mathbf{1}_A(x)
1A(x) 或
χ
A
(
x
)
\chi_A(x)
χA(x) 表示)用于表示事件的发生与否。它是一个标量函数,输出为 0 或 1,用于指示某个元素是否属于某个集合。它常用于期望值的计算,例如:
E
[
1
A
(
X
)
]
=
P
(
X
∈
A
)
\mathbb{E}[\mathbf{1}_A(X)] = \mathbb{P}(X \in A)
E[1A(X)]=P(X∈A)
这里,
1
A
(
X
)
\mathbf{1}_A(X)
1A(X) 表示随机变量
X
X
X 是否属于集合
A
A
A。
特征函数(Characteristic Function)
在概率论中,特征函数
φ
X
(
t
)
\varphi_X(t)
φX(t) 是一个完全不同的概念,其定义为:
φ
X
(
t
)
=
E
[
e
i
t
X
]
\varphi_X(t) = \mathbb{E}[e^{itX}]
φX(t)=E[eitX]
特征函数用于描述随机变量的分布特性,而不是用于表示事件的发生与否。它是随机变量的傅里叶变换,用于唯一确定随机变量的分布。
统计学
在统计分析中,指示函数用于构建模型,尤其是在处理分类数据时。例如,在逻辑回归中,指示函数可以用来表示某个分类变量的取值,如逻辑回归公式:
y
=
β
0
+
β
1
1
(
x
∈
C
1
)
+
⋯
y = \beta_0 + \beta_1 \mathbf{1}(x \in C_1) + \cdots
y=β0+β11(x∈C1)+⋯
其中,指示函数
1
(
x
∈
C
1
)
\mathbf{1}(x \in C_1)
1(x∈C1) 表示变量
x
x
x 是否属于类别
C
1
C_1
C1。
函数分析
在函数分析中,指示函数 χ A ( x ) \chi_A(x) χA(x) 用于定义特定区域上的函数,特别是在测度理论中。它用于构造简单函数,进而用于定义更复杂函数的积分。例如,在勒贝格积分中,指示函数是构建可测函数的基础。
计算机科学
在算法分析和数据结构中,指示函数用于表示集合中的元素是否存在。例如,在布尔数组中,指示函数可以用来标记某个元素是否属于某个集合。
4. 概念对比表
术语 | 数学表达 ~~~~~~~~~~~~~~~~~~ | 功能定位 | 潜在歧义与需注意点 |
---|---|---|---|
指示函数 (Indicator Function) | 1 A ( x ) ∈ { 0 , 1 } \mathbf{1}_A(x) \in \{0, 1\} 1A(x)∈{0,1} | 集合成员验证 | 标准术语,直接关联集合/事件的归属判断 |
示性函数 | 同指示函数 | 与“指示函数”等价 | 在台湾,“特徵函數”常用来指特征值问题相关概念,需注意与本文所讨论示性函数在概念和用词上的区别 |
特征函数 (Characteristic Function) | φ X ( t ) = E [ e i t X ] \varphi_X(t) = \mathbb{E}[e^{itX}] φX(t)=E[eitX] | 分布唯一标识 | 非等同关系! 与指示函数功能完全不同 |
5. 与特征函数的界限
概率论中的 “特征函数”(Characteristic Function
φ
X
(
t
)
\varphi_X(t)
φX(t)) 具有严格定义:
φ
X
(
t
)
=
E
[
e
i
t
X
]
,
t
∈
R
\varphi_X(t) = \mathbb{E}\left[e^{itX}\right], \quad t \in \mathbb{R}
φX(t)=E[eitX],t∈R
其功能是通过傅里叶逆变换唯一确定随机变量
X
X
X 的分布,与“指示函数”无直接关联。混淆两者的概念可能引发定义错误(例如误用特征函数的代数性质为事件归属判断)。
⚠️ 注意:
χ A \chi_A χA 可能与特征函数(characteristic function)混淆。
在某些文献或研究领域中, χ A \chi_A χA 也用于表示特征函数。为避免歧义,优先使用 1 A \mathbf{1}_A 1A。
6. 参考资料
- 经典教材:P. Billingsley,《Probability and Measure》(第4版)
- 系统性介绍测度论框架下的数学基础、指示函数在积分中的操作规则,以及随机变量的期望值计算演示。
- 延伸阅读:
- H.L. Royden,《Real Analysis》(测度理论严谨证明)
- R. Durrett,《Probability: Theory and Examples》(应用案例分析)
7. 历史发展
时期 | 贡献学者 | 关键发展 |
---|---|---|
19世纪末 | J. von Neumann | 在当时集合论发展的大环境下,奠定了集合论基础 |
20世纪中叶 | A.N. Kolmogorov | 在数学分析等领域发展的推动下,给出了测度理论化形式表达 |
现代 | P. Billingsley | 在概率教材中系统性推广使用指示函数,促进了该概念在概率论等领域的广泛应用 |
via:
-
示性函数(Indicator Function)-CSDN博客
https://blog.csdn.net/weixin_39699362/article/details/136974064 -
LaTeX indicator function(指示函数)(\mathbb {1} 不起作用)_latex示性函数-CSDN博客
https://blog.csdn.net/lanchunhui/article/details/71104674 -
LaTeX文档中使用指示函数(indicator function)_latex 指示函数-CSDN博客
https://blog.csdn.net/qq_36158230/article/details/124420798 -
机器学习公式推导中,I( ),E( ),这两个符号代表什么意思? - 知乎
https://www.zhihu.com/question/57024095