Indicator Function | 指示函数 / 示性函数 vs. 特征函数

注:本文为 “Indicator Function” 相关文章合辑

未整理。


示性函数(Indicator Function)

第六五签 于 2024 - 03 - 23 19:58:40 发布

示性函数(Indicator Function),也称为指示函数或特征函数,是数学中一个简单而强大的概念,用于表示某个集合中元素的存在性。给定一个集合 A A A,示性函数定义为一个函数 I A ( x ) I_A(x) IA(x),对于所有的输入 x x x,当 x ∈ A x \in A xA 时, I A ( x ) = 1 I_A(x) = 1 IA(x)=1;若 x ∉ A x \notin A x/A 时, I A ( x ) = 0 I_A(x) = 0 IA(x)=0。简而言之,示性函数用于指示一个元素是否属于某个特定集合。

数学定义

对于任意集合 A A A 和全集 X X X 的元素 x x x,示性函数 I A : X → { 0 , 1 } I_A : X \to \{0, 1\} IA:X{0,1} 定义如下:

I A ( x ) = { 1 if  x ∈ A 0 otherwise I_A(x)=\begin{cases} 1 & \text{if } x \in A \\ 0 & \text{otherwise} \end{cases} IA(x)={10if xAotherwise

用途

示性函数在数学、统计学、计算机科学等多个领域都有广泛的应用。它们可以用于:

  • 集合运算:通过示性函数的代数运算,可以方便地表示集合的并、交、差等运算。
  • 概率论:在概率论中,示性函数可以用来描述随机事件的发生情况,进而用于计算事件的概率等。
  • 测度论:示性函数在测度论中用于构建简单函数,是测度论与积分理论的基础工具之一。
  • 函数逼近:在数值方法和信号处理中,示性函数可以用来构造复杂函数的简单逼近。

示例

假设有一个集合 A = { 2 , 4 , 6 } A = \{2, 4, 6\} A={2,4,6},那么示性函数 I A ( x ) I_A(x) IA(x) 就可以表示为:

I A ( x ) = { 1 if  x = 2 , 4 , 6 0 otherwise I_A(x)=\begin{cases} 1 & \text{if } x = 2, 4, 6 \\ 0 & \text{otherwise} \end{cases} IA(x)={10if x=2,4,6otherwise

这意味着,如果我们输入 x = 2 x = 2 x=2,那么 I A ( 2 ) = 1 I_A(2) = 1 IA(2)=1,表示 2 属于集合 A A A;而如果我们输入 x = 3 x = 3 x=3,那么 I A ( 3 ) = 0 I_A(3) = 0 IA(3)=0,表示 3 不属于集合 A A A

示性函数因其简单和普遍适用性,在数学分析、统计学和应用数学领域中扮演着重要角色。


LaTeX indicator function(指示函数)(\mathbb {1} 不起作用)

五道口纳什于 2017-05-02 22:17:39 发布

问题

在 LaTeX 中,\mathbb 命令用于生成空心字符,但该命令仅对字符有效,对数字无效。

解决方法

1、使用 bbm

若要使用 bbm 包来表示指示函数(空心的“1”),可参考以下代码:

\documentclass{article}
\usepackage{bbm}
\begin{document}
$$ \mathbbm{1} $$
\end{document}

2、使用 dsfont(double stroke)包

通过加载 dsfont 包,也可以实现类似的效果,示例代码如下:

\documentclass{article}
\usepackage{dsfont}
\begin{document}
$$ \mathds{1} $$
\end{document}

3、对大写字母 I 进行空心化

另外,一种较为简单的方式是对大写字母 I 进行空心化处理,使用 I \mathbb I I$\mathbb I$) 来表示。


机器学习公式推导中, I ( ) I() I(), E ( ) E() E(), 这两个符号代表什么意思?

比如: I ( h ( x , z ) = y ) I(h(x,z)=y) I(h(x,z)=y) 是计数吗?那 E ( I ( h ( x , z ) = y ) ) E(I(h(x,z)=y)) E(I(h(x,z)=y)) 代表什么?

小狼
89 人赞

不知道你指的是不是 E [ I ( h ( x , z ) = y ) ] \mathbb{E}[I(h(x,z) = y)] E[I(h(x,z)=y)]. 如果是,机器学习中 I ( ) I() I() 应该指的是 Indicator Function (指示函数), E [ ] \mathbb{E}[] E[] 应该指的是 Expected Value (期望值)。

指示函数 Indicator Function

指示函数是定义在集合 X X X 上的函数,用来表示其中有哪些元素属于它的子集 A A A
集合 X X X 的子集 A A A 的指示函数是函数 I A : X → { 0 , 1 } {\mathbb I}_A : X \to \{0, 1\} IA:X{0,1},定义为:

I A ( x ) : = { 1 if  x ∈ A 0 if  x ∉ A (1) {\mathbb I}_A(x) := \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases} \tag{1} IA(x):={10if xAif x/A(1)

I ( h ( x , z ) = y ) {\mathbb I}(h(x,z) = y) I(h(x,z)=y) 用来判断 h ( x , z ) = y h(x,z) = y h(x,z)=y,成立时 I ( h ( x , z ) = y ) {\mathbb I}(h(x,z) = y) I(h(x,z)=y) 为 1,不成立时为 0,即:

I I ( h ( x , z ) = y ) = { 1 h ( x , z ) = y 0 h ( x , z ) ≠ y {\mathbb I}I(h(x,z) = y)= \begin{cases} 1 & h(x,z) = y \\ 0 & h(x,z) \neq y \end{cases} II(h(x,z)=y)={10h(x,z)=yh(x,z)=y

期望值 Expected Value

X X X 是一个随机变量,具有分别以概率 p 1 , p 2 , ⋯   , p k p_1, p_2, \cdots , p_k p1,p2,,pk 出现的有限数量的有限结果 x 1 , x 2 , ⋯   , x k x_1, x_2, \cdots , x_k x1,x2,,xk
X X X 的期望值 E [ X ] \mathbb{E}[X] E[X] 定义为:

E [ X ] = ∑ i = 1 k x i p i = x 1 p 1 + x 2 p 2 + ⋯ + x k p k \mathbb{E}[X] = \sum_{i = 1}^{k} x_i p_i = x_1 p_1 + x_2 p_2 + \cdots + x_k p_k E[X]=i=1kxipi=x1p1+x2p2++xkpk

一般都会有下标然后求和求积分什么的,但是题主这里没有,那么 E [ I ( h ( x , z ) = y ) ] \mathbb{E}[{\mathbb I}(h(x,z) = y)] E[I(h(x,z)=y)] 就表示的是 h ( x , z ) = y h(x,z) = y h(x,z)=y 的指示函数的期望值 ~

参考

  1. 翻译自 Wikipedia https://en.wikipedia.org/wiki/Indicator_function#Definition
  2. 翻译自 Wikipedia https://en.wikipedia.org/wiki/Expected_value#Finite_case

编辑于 2020 - 07 - 09 16:35

爱做梦的猪
16 人赞

I ( x ) {\mathbb I}(x) I(x) 代表指示函数,数学中,指示函数是定义在某集合 X 上的函数,表示其中有哪些元素属于某一子集 A。概率论有另一意思迥异的特征函数。可以说为真输出 1,为假输出 0。 I ( h ( x , z ) = y ) {\mathbb I}(h(x,z)=y) I(h(x,z)=y) 表示如果 h ( x , z ) = y h(x,z)=y h(x,z)=y,则输出为 1,否则输出为 0。

发布于 2018 - 04 - 02 15:16


指示函数(Indicator Function)

1. 定义

指示函数是用于描述元素是否属于某个集合的二元标量函数,其定义如下:
1 A ( x ) = { 1 , 若  x ∈ A 0 , 若  x ∉ A \mathbf{1}_A(x) = \begin{cases} 1, & \text{若 } x \in A \\ 0, & \text{若 } x \notin A \end{cases} 1A(x)={1,0, xA x/A
此外,也可以通过布尔表达式来表示:
1 ( x ∈ A ) = { 1 , 若  x ∈ A  为真 0 , 若  x ∈ A  为假 \mathbf{1}(x \in A) = \begin{cases} 1, & \text{若 } x \in A \text{ 为真} \\ 0, & \text{若 } x \in A \text{ 为假} \end{cases} 1(xA)={1,0, xA 为真 xA 为假

2. 符号表示方法

常见符号系统

符号描述
1 A ( x ) \mathbf{1}_A(x) 1A(x)国际标准化表达
I A ( x ) I_A(x) IA(x)常见于初级教材

3. 应用领域

概率论

在概率论中,指示函数(通常用 1 A ( x ) \mathbf{1}_A(x) 1A(x) χ A ( x ) \chi_A(x) χA(x) 表示)用于表示事件的发生与否。它是一个标量函数,输出为 0 或 1,用于指示某个元素是否属于某个集合。它常用于期望值的计算,例如:
E [ 1 A ( X ) ] = P ( X ∈ A ) \mathbb{E}[\mathbf{1}_A(X)] = \mathbb{P}(X \in A) E[1A(X)]=P(XA)
这里, 1 A ( X ) \mathbf{1}_A(X) 1A(X) 表示随机变量 X X X 是否属于集合 A A A

特征函数(Characteristic Function)

在概率论中,特征函数 φ X ( t ) \varphi_X(t) φX(t) 是一个完全不同的概念,其定义为:
φ X ( t ) = E [ e i t X ] \varphi_X(t) = \mathbb{E}[e^{itX}] φX(t)=E[eitX]
特征函数用于描述随机变量的分布特性,而不是用于表示事件的发生与否。它是随机变量的傅里叶变换,用于唯一确定随机变量的分布。

统计学

在统计分析中,指示函数用于构建模型,尤其是在处理分类数据时。例如,在逻辑回归中,指示函数可以用来表示某个分类变量的取值,如逻辑回归公式:
y = β 0 + β 1 1 ( x ∈ C 1 ) + ⋯ y = \beta_0 + \beta_1 \mathbf{1}(x \in C_1) + \cdots y=β0+β11(xC1)+
其中,指示函数 1 ( x ∈ C 1 ) \mathbf{1}(x \in C_1) 1(xC1) 表示变量 x x x 是否属于类别 C 1 C_1 C1

函数分析

在函数分析中,指示函数 χ A ( x ) \chi_A(x) χA(x) 用于定义特定区域上的函数,特别是在测度理论中。它用于构造简单函数,进而用于定义更复杂函数的积分。例如,在勒贝格积分中,指示函数是构建可测函数的基础。

计算机科学

在算法分析和数据结构中,指示函数用于表示集合中的元素是否存在。例如,在布尔数组中,指示函数可以用来标记某个元素是否属于某个集合。

4. 概念对比表

术语数学表达                    ~~~~~~~~~~~~~~~~~~                   功能定位潜在歧义与需注意点
指示函数
(Indicator Function)
1 A ( x ) ∈ { 0 , 1 } \mathbf{1}_A(x) \in \{0, 1\} 1A(x){0,1}集合成员验证标准术语,直接关联集合/事件的归属判断
示性函数同指示函数与“指示函数”等价在台湾,“特徵函數”常用来指特征值问题相关概念,需注意与本文所讨论示性函数在概念和用词上的区别
特征函数
(Characteristic Function)
φ X ( t ) = E [ e i t X ] \varphi_X(t) = \mathbb{E}[e^{itX}] φX(t)=E[eitX]分布唯一标识非等同关系! 与指示函数功能完全不同

5. 与特征函数的界限

概率论中的 “特征函数”(Characteristic Function φ X ( t ) \varphi_X(t) φX(t) 具有严格定义:
φ X ( t ) = E [ e i t X ] , t ∈ R \varphi_X(t) = \mathbb{E}\left[e^{itX}\right], \quad t \in \mathbb{R} φX(t)=E[eitX],tR
其功能是通过傅里叶逆变换唯一确定随机变量 X X X 的分布,与“指示函数”无直接关联。混淆两者的概念可能引发定义错误(例如误用特征函数的代数性质为事件归属判断)。

⚠️ 注意
 
χ A \chi_A χA 可能与特征函数(characteristic function)混淆。
 
在某些文献或研究领域中, χ A \chi_A χA 也用于表示特征函数。为避免歧义,优先使用 1 A \mathbf{1}_A 1A

6. 参考资料

  • 经典教材:P. Billingsley,《Probability and Measure》(第4版)
    • 系统性介绍测度论框架下的数学基础、指示函数在积分中的操作规则,以及随机变量的期望值计算演示。
  • 延伸阅读
    • H.L. Royden,《Real Analysis》(测度理论严谨证明)
    • R. Durrett,《Probability: Theory and Examples》(应用案例分析)

7. 历史发展

时期贡献学者关键发展
19世纪末J. von Neumann在当时集合论发展的大环境下,奠定了集合论基础
20世纪中叶A.N. Kolmogorov在数学分析等领域发展的推动下,给出了测度理论化形式表达
现代P. Billingsley在概率教材中系统性推广使用指示函数,促进了该概念在概率论等领域的广泛应用

via:

### 指示函数的定义 指示函数Indicator Function),也称为特征函数,用于表示集合中的成员资格。对于给定的一个集合 \( A \),其指示函数记作 \( I_A(x) \) 或者 \( 1_A(x) \)[^1]。 该函数的形式化定义如下: \[ I_A(x) = \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{if } x \notin A. \end{cases} \] 这种二元取值特性使得指示函数成为连接具体实例与其所属类别的桥梁,在多个领域有着广泛应用[^2]。 ### 指示函数的作用与应用场景 #### 数据挖掘和机器学习 在数据预处理阶段,当面对分类属性时,可以采用独热编码(one-hot encoding)技术将其转换成数值形式以便于后续计算;此时所使用的正是基于指示函数的思想——通过创建新的二进制列来反映原始类别变量的不同水平[^3]。 另外,在某些特定类型的损失函数设计中也会引入指示函数作为辅助手段之一,比如支持向量机(SVM)里的合页损失(hinge loss)就隐含着这样的机制[^4]。 #### 数学建模与其他学科交叉应用 除了上述提及的信息科学技术范畴外,指示函数同样活跃于其他众多研究领地之中。例如统计物理里用来刻画粒子状态的概率分布律;经济学内衡量消费者偏好模式下的效用表达式等等均可见到它的身影[^5]。 ```python def indicator_function(element, set_elements): """简单的Python实现""" return int(element in set_elements) # 使用例子 A = {1, 2, 3} print(indicator_function(2, A)) # 输出: 1 print(indicator_function(4, A)) # 输出: 0 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值