抽象代数 | 不可约多项式 / 本原多项式

注:本文为 “抽象代数 | 多项式” 相关合辑。
略作重排,未整理去重。
如有内容异常,请看原文。


不可约多项式及本原多项式

OrangRain 已于 2022-12-19 10:53:23 修改

多项式

多项式是形如若干个带有系数的变量的幂次之和的数学表达式。仅含一个变量的多项式可表示为 a n x n + ⋯ + a 1 x + a 0 a_nx^n + \cdots + a_1x + a_0 anxn++a1x+a0,其中多项式变量的最高次数称为该多项式的阶。

对任意一个非零多项式 P ( x ) P (x) P(x)(即 P ( x ) P (x) P(x) 不恒为 0),可表示为

P ( x ) = P ( 0 ) ∏ ρ ∈ X ( 1 − x ρ ) P (x) = P (0)\prod_{\rho \in \mathbb {X}} \left (1 - \frac {x}{\rho}\right) P(x)=P(0)ρX(1ρx)

其中 ρ \rho ρ 是方程 P ( x ) = 0 P (x) = 0 P(x)=0 的根,即满足 P ( ρ ) = 0 P (\rho) = 0 P(ρ)=0

例如,对于多项式 P ( x ) = x 6 − 2 x 4 + 2 x 2 − 1 P (x) = x^6 - 2x^4 + 2x^2 - 1 P(x)=x62x4+2x21

  • 在有理数域上可分解为 P ( x ) = ( x + 1 ) ( x − 1 ) ( x 4 − x 2 + 1 ) P (x) = (x + 1)(x - 1)(x^4 - x^2 + 1) P(x)=(x+1)(x1)(x4x2+1)
  • 在实数域上可分解为 P ( x ) = ( x + 1 ) ( x − 1 ) ( x 2 − 3 x + 1 ) ( x 2 + 3 x + 1 ) P (x) = (x + 1)(x - 1)(x^2 - \sqrt {3} x + 1)(x^2 + \sqrt {3} x + 1) P(x)=(x+1)(x1)(x23 x+1)(x2+3 x+1)
  • 在复数域上可分解为 P ( x ) = ( x + 1 ) ( x − 1 ) ( x − 3 + i 2 ) ( x − 3 − i 2 ) ( x + 3 + i 2 ) ( x + 3 − i 2 ) P (x) = (x + 1)(x - 1)\left (x - \frac {\sqrt {3} + i}{2}\right)\left (x - \frac {\sqrt {3} - i}{2}\right)\left (x + \frac {\sqrt {3} + i}{2}\right)\left (x + \frac {\sqrt {3} - i}{2}\right) P(x)=(x+1)(x1)(x23 +i)(x23 i)(x+23 +i)(x+23 i)

多项式加法案例

P ( x ) = x 3 + x 2 + 4 x − 3 P (x) = x^3 + x^2 + 4x - 3 P(x)=x3+x2+4x3 Q ( x ) = 2 x 2 − 3 x + 5 Q (x) = 2x^2 - 3x + 5 Q(x)=2x23x+5,则

P ( x ) + Q ( x ) = x 3 + ( 1 + 2 ) x 2 + ( 4 − 3 ) x + ( − 3 + 5 ) = x 3 + 3 x 2 + x + 2 \begin{align*} P(x)+Q(x) & ={{x}^{3}}+(1+2){{x}^{2}}+(4-3)x+(-3+5) \\ & ={{x}^{3}}+3{{x}^{2}}+x+2 \end{align*} P(x)+Q(x)=x3+(1+2)x2+(43)x+(3+5)=x3+3x2+x+2

多项式乘法案例

P ( x ) = x 3 + x 2 + 4 x − 3 P (x) = x^3 + x^2 + 4x - 3 P(x)=x3+x2+4x3 Q ( x ) = 2 x 2 − 3 x + 5 Q (x) = 2x^2 - 3x + 5 Q(x)=2x23x+5,则

P ( x ) Q ( x ) = 2 x 5 + ( − 3 + 2 ) x 4 + ( 5 − 3 + 8 ) x 3 + ( − 6 − 12 + 5 ) x 2 + ( 20 + 9 ) x − 15 = 2 x 5 − x 4 + 10 x 3 − 13 x 2 + 29 x − 15 \begin{align*} P(x)Q(x) & =2{{x}^{5}}+(-3+2){{x}^{4}}+(5-3+8){{x}^{3}}+(-6-12+5){{x}^{2}}+(20+9)x-15 \\ & =2{{x}^{5}}-{{x}^{4}}+10{{x}^{3}}-13{{x}^{2}}+29x-15 \end{align*} P(x)Q(x)=2x5+(3+2)x4+(53+8)x3+(612+5)x2+(20+9)x15=2x5x4+10x313x2+29x15

多项式除法案例

对于多项式 p ( x ) p (x) p(x) 和非零多项式 q ( x ) q (x) q(x),存在唯一的多项式 Q ( x ) Q (x) Q(x)(商式)和 R ( x ) R (x) R(x)(余式),满足 p ( x ) = Q ( x ) q ( x ) + R ( x ) p (x) = Q (x) q (x) + R (x) p(x)=Q(x)q(x)+R(x),其中

deg ⁡ R ( x ) < deg ⁡ q ( x ) \deg R (x) < \deg q (x) degR(x)<degq(x) R ( x ) = 0 R (x) = 0 R(x)=0,即 R ( x ) ≡ p ( x ) m o d    q ( x ) R (x) \equiv p (x) \mod q (x) R(x)p(x)modq(x)

例如,对于 p ( x ) = x 4 + x 3 + x 2 + x + 1 p (x) = x^4 + x^3 + x^2 + x + 1 p(x)=x4+x3+x2+x+1 q ( x ) = x 2 − 1 q (x) = x^2 - 1 q(x)=x21,有 Q ( x ) = x 2 + x + 2 Q (x) = x^2 + x + 2 Q(x)=x2+x+2 R ( x ) = 2 x + 3 R (x) = 2x + 3 R(x)=2x+3,满足
2 x + 3 ≡ x 4 + x 3 + x 2 + x + 1 m o d    x 2 − 1 2x + 3 \equiv x^4 + x^3 + x^2 + x + 1 \mod x^2 - 1 2x+3x4+x3+x2+x+1modx21

计算过程如下:

在这里插入图片描述

如需更多计算案例,可自行设置多项式,并通过该网站进行验证。

有限域

建议在了解有限域的相关知识后,再学习不可约多项式的概念。关于有限域的内容,可参考这篇博客。

伽罗华域(有限域)及其运算规则

OrangRain 已于 2024-04-22 16:31:14 修改

模运算

 
除法定理
 
Z = { ⋯   , − 1 , 0 , 1 , ⋯   } \mathbb{Z} = \{\cdots, -1, 0, 1, \cdots\} Z={,1,0,1,} 为整数集。对于任意整数 a a a 和任意正整数 n n n,存在唯一的整数 q q q r r r,满足 0 ≤ r < n 0 \leq r < n 0r<n,且 a = q n + r a = qn + r a=qn+r。其中, q = ⌊ a n ⌋ q = \left\lfloor \frac{a}{n} \right\rfloor q=na 称为除法的 ⌊ ⋅ ⌋ \lfloor \cdot \rfloor 表示向下取整; r ≡ a m o d    n r \equiv a \mod n ramodn 称为除法的余数
 
简单例子
 

  • 19 m o d    11 ≡ 8 m o d    11 19 \mod 11 \equiv 8 \mod 11 19mod118mod11
  • − 7 m o d    11 ≡ 4 m o d    11 -7 \mod 11 \equiv 4 \mod 11 7mod114mod11
     
    模运算的好处在于:在某些程序进行线性运算时,由于存储空间大小固定,可能存在结果溢出的情况。模运算可以将结果始终限定在范围 { x ∣ 0 ≤ x < n , x ∈ Z } \{x \mid 0 \leq x < n, x \in \mathbb{Z}\} {x0x<n,xZ} 内,从而避免溢出。
     

有限群

 
( S , ⊕ ) (S, \oplus) (S,) 是由集合 S S S 和二元运算符 ⊕ \oplus 组成的代数结构,其中群中的元素个数是有限的。该运算应满足以下性质:
 

  • 封闭性:对于任意 a , b ∈ S a, b \in S a,bS,有 a ⊕ b ∈ S a \oplus b \in S abS
  • 单位元:存在一个元素 e ∈ S e \in S eS,称为单位元,对所有 a ∈ S a \in S aS,满足 e ⊕ a = a ⊕ e = a e \oplus a = a \oplus e = a ea=ae=a
  • 结合律:对于任意 a , b , c ∈ S a, b, c \in S a,b,cS,有 ( a ⊕ b ) ⊕ c = a ⊕ ( b ⊕ c ) (a \oplus b) \oplus c = a \oplus (b \oplus c) (ab)c=a(bc)
  • 逆元:对于任意 a ∈ S a \in S aS,存在 b ∈ S b \in S bS,满足 a ⊕ b = b ⊕ a = e a \oplus b = b \oplus a = e ab=ba=e
     

n n n 加法群

 
定义群 ( Z n , + n ) (\mathbb{Z}_n, +_n) (Zn,+n),其中 Z n = { x ∣ 0 ≤ x < n , x ∈ Z } \mathbb{Z}_n = \{x \mid 0 \leq x < n, x \in \mathbb{Z}\} Zn={x0x<n,xZ} + n +_n +n 表示模 n n n 上的加法,即 a + n b = ( a + b ) m o d    n a +_n b = (a + b) \mod n a+nb=(a+b)modn。群 ( Z 5 , + 5 ) (\mathbb{Z}_5, +_5) (Z5,+5) 的运算表如下:
 

+ 5 +_5 +501234
001234
112340
223401
334012
440123

 
在该群中,单位元为 0,0 的逆元为 0,1 的逆元为 4。

n n n 乘法群

定义群 ( Z n ∗ , ⋅ n ) (\mathbb{Z}_n^*, \cdot_n) (Zn,n),其中 Z n ∗ = { x ∈ Z n ∣ gcd ⁡ ( x , n ) = 1 } \mathbb{Z}_n^* = \{x \in \mathbb{Z}_n \mid \gcd(x, n) = 1\} Zn={xZngcd(x,n)=1} gcd ⁡ ( x , n ) \gcd(x, n) gcd(x,n) 表示求 x x x n n n 的最大公因数。若两数的最大公因数为 1,则称这两个数互素。 ⋅ n \cdot_n n 表示模 n n n 上的乘法,即 a ⋅ n b = ( a ⋅ b ) m o d    n a \cdot_n b = (a \cdot b) \mod n anb=(ab)modn。群 ( Z 8 ∗ , ⋅ 8 ) (\mathbb{Z}_8^*, \cdot_8) (Z8,8) 的运算表如下:
 

⋅ 8 \cdot_8 81357
11357
33175
55713
77531

注意, Z 8 ∗ = { 1 , 3 , 5 , 7 } ≠ { 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 } \mathbb{Z}_8^* = \{1, 3, 5, 7\} \neq \{0, 1, 2, 3, 4, 5, 6, 7\} Z8={1,3,5,7}={0,1,2,3,4,5,6,7},因为 0、2、4、6 与 8 不互素。
 
构造 ( Z 8 , ⋅ 8 ) (\mathbb{Z}_8, \cdot_8) (Z8,8) 的运算表如下:
 

⋅ 8 \cdot_8 801234567
000000000
101234567
202460246
303614725
404040404
505274163
606420642
707654321

 
该运算表中,并非所有元素都有逆元,因此不能构成群。
 
n n n 为素数时, Z n ∗ = { 1 , 2 , … , n − 1 } \mathbb{Z}_n^* = \{1, 2, \dots, n - 1\} Zn={1,2,,n1},因为 n n n 与所有小于它的正整数均互素。
 
例如,群 ( Z 5 ∗ , ⋅ 5 ) (\mathbb{Z}_5^*, \cdot_5) (Z5,5) 的运算表如下:
 

⋅ 5 \cdot_5 51234
11234
22413
33142
44321

异或群

定义群 ( Z n , ⊕ ) (\mathbb{Z}_n, \oplus) (Zn,),其中 Z n = { x ∣ 0 ≤ x < n , x ∈ Z } \mathbb{Z}_n = \{x \mid 0 \leq x < n, x \in \mathbb{Z}\} Zn={x0x<n,xZ} ⊕ \oplus 表示异或运算。群 ( Z 4 , ⊕ ) (\mathbb{Z}_4, \oplus) (Z4,) 的运算表如下:
 

⊕ \oplus 0123
00123
11032
22301
33210

显然,单位元为 0,且每个元素的逆元为其自身。

伽罗华域

伽罗华域(有限域)是一种特殊的代数结构,其运算元素集合和四则运算(加法、减法、乘法、除法)满足特定的性质。
由于减法和除法分别是加法和乘法的逆运算,因此只需关注加法和乘法即可。
对于加法,每个元素都应有对应的加法逆元;对于乘法,除 0 以外的每个元素都应有对应的乘法逆元。
关于群、环、域的详细概念,可参考相关资料。
 
代数结构入门:群、环、域、向量空间 - 知乎

伽罗华域 G F ( q ) GF(q) GF(q) 表示

q q q 表示有限域的阶,即有限域中元素的个数。有限域的阶通常是素数 p p p 或素数幂 p w p^w pw,即 q = p q = p q=p p w p^w pw

有限域 G F ( p ) GF(p) GF(p)

G F ( p ) GF(p) GF(p) 称为 p p p 阶素数域,其中 p p p 为素数。运算元素的集合为 Z p \mathbb{Z}_p Zp,加法和乘法运算均在模 p p p 下进行,即加法和乘法运算分别为 + p +_p +p ⋅ p \cdot_p p。在 G F ( p ) GF(p) GF(p) 中, a ≡ b m o d    p a \equiv b \mod p abmodp a = b a = b a=b 等价,这意味着 a = b → a = k p + b a = b \to a = kp + b a=ba=kp+b,其中 k ∈ Z k \in \mathbb{Z} kZ。当 p p p 为素数时,所有大于 0 且小于 p p p 的整数均与 p p p 互素。
根据模 n n n 乘法群的概念,除去 0 以外,每个元素都能找到其逆元。
 
G F ( 2 ) GF(2) GF(2) 为例,其仅包含元素 0 和 1,加法表如下:
 

+01
001
11 0   ( 1 + 1 = 2 m o d    2 ≡ 0 m o d    2 ) 0 \ (1 + 1 = 2 \mod 2 \equiv 0 \mod 2) 0 (1+1=2mod20mod2)

乘法表如下:
 

⋅ \cdot 01
000
101
有限域 G F ( p w ) GF(p^w) GF(pw)

w > 1 w > 1 w>1 时, G F ( p w ) GF(p^w) GF(pw) 可以表示为系数属于 G F ( p ) GF(p) GF(p) 域上的多项式, w w w 表示多项式的最高次数。
例如,对于 G F ( 3 4 ) GF(3^4) GF(34),其包含的多项式有 0 , 1 , 2 , x + 1 , x + 2 , 2 x , 2 x + 1 , 2 x + 2 , x 2 + x , … , 2 x 3 + 2 x 2 + 2 x + 2 0, 1, 2, x + 1, x + 2, 2x, 2x + 1, 2x + 2, x^2 + x, \dots, 2x^3 + 2x^2 + 2x + 2 0,1,2,x+1,x+2,2x,2x+1,2x+2,x2+x,,2x3+2x2+2x+2,即多项式系数为 0、1、2,且多项式的次数不超过 4。
符合这两个条件的多项式个数为 p w p^w pw。需要注意的是,有限域中的元素可以视为多项式,加法和乘法运算指多项式的加法和乘法,但计算后的各项系数需取模 p p p,同时对整体还需取模 f ( x ) f(x) f(x)
 
接下来通过大量例子进行说明。
 
对于 G F ( 2 3 ) GF(2^3) GF(23),其包含的元素有 8 个,分别为 0 , 1 , x , x + 1 , x 2 , x 2 + 1 , x 2 + x , x 2 + x + 1 0, 1, x, x + 1, x^2, x^2 + 1, x^2 + x, x^2 + x + 1 0,1,x,x+1,x2,x2+1,x2+x,x2+x+1
在一些文献中,多项式可以用二进制表示,即这 8 个元素也可分别表示为 000、001、010、011、100、101、110、111。
其可取的模为 x 3 + x 2 + 1 x^3 + x^2 + 1 x3+x2+1 x 3 + x + 1 x^3 + x + 1 x3+x+1,模也可用二进制表示为 1101 和 1011。
 
在有限域 G F ( 2 w ) GF(2^w) GF(2w) 中,需对多项式各项系数取模 2。
 

  • ( x + 1 ) 2 = x 2 + 2 x + 1 ≡ x 2 + 1 (x + 1)^2 = x^2 + 2x + 1 \equiv x^2 + 1 (x+1)2=x2+2x+1x2+1,这里对 2 x 2x 2x 的系数取模, 2 ≡ 0 m o d    2 2 \equiv 0 \mod 2 20mod2
  • 3 x 2 − x − 1 ≡ x 2 + x + 1 3x^2 - x - 1 \equiv x^2 + x + 1 3x2x1x2+x+1,这里对 3 x 2 3x^2 3x2 的系数取模, 3 ≡ 1 m o d    2 3 \equiv 1 \mod 2 31mod2
  • ( x + 1 ) 3 = x 3 + 3 x 2 + 3 x + 1 ≡ x 3 + x 2 + x + 1 (x + 1)^3 = x^3 + 3x^2 + 3x + 1 \equiv x^3 + x^2 + x + 1 (x+1)3=x3+3x2+3x+1x3+x2+x+1

 

在有限域 G F ( 3 w ) GF(3^w) GF(3w) 中,需对多项式各项系数取模 3。
 

  • ( x + 1 ) 2 = x 2 + 2 x + 1 ≡ x 2 + 2 x + 1 (x + 1)^2 = x^2 + 2x + 1 \equiv x^2 + 2x + 1 (x+1)2=x2+2x+1x2+2x+1
  • 3 x 2 − x − 1 ≡ 2 x + 2 3x^2 - x - 1 \equiv 2x + 2 3x2x12x+2
  • ( x + 1 ) 3 = x 3 + 3 x 2 + 3 x + 1 ≡ x 3 + 1 (x + 1)^3 = x^3 + 3x^2 + 3x + 1 \equiv x^3 + 1 (x+1)3=x3+3x2+3x+1x3+1
     

接下来进行取模运算,模为 f ( x ) f(x) f(x),该模通常为不可约多项式或本原多项式。
本原多项式是不可约多项式的特例,即在不可约多项式中,除去最高次项外,剩余项次数最小的多项式称为本原多项式。
 
对于 G F ( 2 3 ) GF(2^3) GF(23),模可以取 x 3 + x 2 + 1 x^3 + x^2 + 1 x3+x2+1 x 3 + x + 1 x^3 + x + 1 x3+x+1,这两个多项式均为 3 次不可约多项式。
 
再列举几个计算案例。
 
G F ( 2 3 ) GF(2^3) GF(23) 中,模取 x 3 + x + 1 x^3 + x + 1 x3+x+1,计算 4 x 5 + 3 x 3 + 1 m o d    ( x 3 + x + 1 ) 4x^5 + 3x^3 + 1 \mod (x^3 + x + 1) 4x5+3x3+1mod(x3+x+1)
 
回顾整数除法 11 ÷ 5 = 2 11 \div 5 = 2 11÷5=2 余 1,即 11 ≡ 1 m o d    5 11 \equiv 1 \mod 5 111mod5
 
4 x 5 + 3 x 3 + 1 x 3 + x + 1 = 4 x 2 − 1 + − 4 x 2 + x + 2 x 3 + x + 1 \frac{4x^5 + 3x^3 + 1}{x^3 + x + 1} = 4x^2 - 1 + \frac{-4x^2 + x + 2}{x^3 + x + 1} x3+x+14x5+3x3+1=4x21+x3+x+14x2+x+2
 
因此,余项为 − 4 x 2 + x + 2 -4x^2 + x + 2 4x2+x+2,即
 
4 x 5 + 3 x 3 + 1 m o d    ( x 3 + x + 1 ) ≡ − 4 x 2 + x + 2 m o d    ( x 3 + x + 1 ) 4x^5 + 3x^3 + 1 \mod (x^3 + x + 1) \equiv -4x^2 + x + 2 \mod (x^3 + x + 1) 4x5+3x3+1mod(x3+x+1)4x2+x+2mod(x3+x+1)
 
注意,这里对各项系数取模 2,与多项式的模无关,因此
 
− 4 x 2 + x + 2 ≡ x m o d    ( x 3 + x + 1 ) -4x^2 + x + 2 \equiv x \mod (x^3 + x + 1) 4x2+x+2xmod(x3+x+1)
 
或者,先对 4 x 5 + 3 x 3 + 1 4x^5 + 3x^3 + 1 4x5+3x3+1 的系数取模 2,得到 x 3 + 1 x^3 + 1 x3+1
 
x 3 + 1 x 3 + x + 1 = 1 + − x x 3 + x + 1 \frac{x^3 + 1}{x^3 + x + 1} = 1 + \frac{-x}{x^3 + x + 1} x3+x+1x3+1=1+x3+x+1x
 
对余项 − x -x x 的系数 − 1 -1 1 取模 2,结果为 x x x
 
再举一个例子:
 
( 1 + 2 m ) x 2 + ( 1 + 2 n ) x ≡ x 2 + x m o d    ( x 3 + x + 1 ) (1 + 2m)x^2 + (1 + 2n)x \equiv x^2 + x \mod (x^3 + x + 1) (1+2m)x2+(1+2n)xx2+xmod(x3+x+1)
 
其中 m , n ∈ Z m, n \in \mathbb{Z} m,nZ
 
以下是部分幂运算的结果及其对应的多项式表示和二进制表示:
 

多项式表示 (模为 x 3 + x 2 + 1 x^3 + x^2 + 1 x3+x2+1)二进制表示 (模为 x 3 + x 2 + 1 x^3 + x^2 + 1 x3+x2+1)多项式表示 (模为 x 3 + x + 1 x^3 + x + 1 x3+x+1)二进制表示 (模为 x 3 + x + 1 x^3 + x + 1 x3+x+1)
000000000
x 0 x^0 x010011001
x 1 x^1 x1 x x x010 x x x010
x 2 x^2 x2 x 2 x^2 x2100 x 2 x^2 x2100
x 3 x^3 x3 x 2 + 1 x^2 + 1 x2+1101 x + 1 x + 1 x+1011
x 4 x^4 x4 x 2 x^2 x2100 x 2 + x x^2 + x x2+x110

有限域 G F ( 2 w ) GF (2^w) GF(2w) 上的多项式运算

G F ( 2 w ) GF (2^w) GF(2w) 是一类常见的有限域,以下以该有限域为例说明多项式运算。

沿用上述例子,设 P ( x ) = x 3 + x 2 + 4 x − 3 P (x) = x^3 + x^2 + 4x - 3 P(x)=x3+x2+4x3 Q ( x ) = 2 x 2 − 3 x + 5 Q (x) = 2x^2 - 3x + 5 Q(x)=2x23x+5,需对各项系数按模 2 运算,即:

- P ( x ) = x 3 + x 2 + 4 x − 3 ≡ x 3 + x 2 + 1 P (x) = x^3 + x^2 + 4x - 3 \equiv x^3 + x^2 + 1 P(x)=x3+x2+4x3x3+x2+1(系数模 2 后,4 ≡ 0,-3 ≡ 1);

- Q ( x ) = 2 x 2 − 3 x + 5 ≡ x + 1 Q (x) = 2x^2 - 3x + 5 \equiv x + 1 Q(x)=2x23x+5x+1(系数模 2 后,2 ≡ 0,-3 ≡ 1,5 ≡ 1)。

进行加法运算时,结果的各项系数也需按模 2 取值:

( x 3 + x 2 + 1 ) + ( x + 1 ) ≡ x 3 + x 2 + x (x^3 + x^2 + 1) + (x + 1) \equiv x^3 + x^2 + x (x3+x2+1)+(x+1)x3+x2+x(常数项 1 + 1 ≡ 0 模 2)。

乘法运算同样遵循此规则,即运算结果的各项系数需按模 2 取值。

不可约多项式

若一个次数大于 0 的多项式在指定的域上不能分解为两个次数更低的多项式的乘积,则称该多项式为不可约多项式。

在有限域 G F ( 2 3 ) GF (2^3) GF(23) 中,其元素可表示为系数属于 G F ( 2 ) GF (2) GF(2)(即系数为 0 或 1)且次数小于 3 的多项式。

- G F ( 2 2 ) GF (2^2) GF(22) 的元素(多项式)为 0 , 1 , x , x + 1 0, 1, x, x + 1 0,1,x,x+1

- G F ( 2 3 ) GF (2^3) GF(23) 的元素(多项式)为 0 , 1 , x , x + 1 , x 2 , x 2 + 1 , x 2 + x , x 2 + x + 1 0, 1, x, x + 1, x^2, x^2 + 1, x^2 + x, x^2 + x + 1 0,1,x,x+1,x2,x2+1,x2+x,x2+x+1

- G F ( 2 4 ) GF (2^4) GF(24) 的元素(多项式)为

0 , 1 , x , x + 1 , x 2 , x 2 + 1 , x 2 + x , x 2 + x + 1 , x 3 , x 3 + 1 , x 3 + x , x 3 + x + 1 , x 3 + x 2 , x 3 + x 2 + 1 , x 3 + x 2 + x , x 3 + x 2 + x + 1 0, 1, x, x + 1, x^2, x^2 + 1, x^2 + x, x^2 + x + 1, x^3, x^3 + 1, x^3 + x, x^3 + x + 1, x^3 + x^2, x^3 + x^2 + 1, x^3 + x^2 + x, x^3 + x^2 + x + 1 0,1,x,x+1,x2,x2+1,x2+x,x2+x+1,x3,x3+1,x3+x,x3+x+1,x3+x2,x3+x2+1,x3+x2+x,x3+x2+x+1

类似于整数环中模素数的乘法群(当模为素数时,所有小于该素数的非零整数都与该素数互素),多项式中也需寻找具有类似 “素数性质”(仅能分解为 1 和自身的乘积)的多项式作为模。

G F ( 2 2 ) GF (2^2) GF(22) 为例,次数为 2 的多项式是构造该域的候选多项式,包括 x 2 , x 2 + 1 , x 2 + x , x 2 + x + 1 x^2, x^2 + 1, x^2 + x, x^2 + x + 1 x2,x2+1,x2+x,x2+x+1

- x 2 = x ⋅ x x^2 = x \cdot x x2=xx,可分解;

- x 2 + x = x ( x + 1 ) x^2 + x = x (x + 1) x2+x=x(x+1),可分解;

- x 2 + 1 ≡ ( x + 1 ) ( x + 1 ) x^2 + 1 \equiv (x + 1)(x + 1) x2+1(x+1)(x+1)(在 G F ( 2 ) GF (2) GF(2) 中, 2 x ≡ 0 2x \equiv 0 2x0),可分解。

因此, G F ( 2 2 ) GF (2^2) GF(22) 上的不可约多项式仅为 x 2 + x + 1 x^2 + x + 1 x2+x+1

对于 G F ( 2 3 ) GF (2^3) GF(23),次数为 3 的多项式为候选多项式。首先排除不含常数项 1 的多项式(因可提取因子 x x x),剩余候选为

x 3 + 1 , x 3 + x + 1 , x 3 + x 2 + 1 , x 3 + x 2 + x + 1 x^3 + 1, x^3 + x + 1, x^3 + x^2 + 1, x^3 + x^2 + x + 1 x3+1,x3+x+1,x3+x2+1,x3+x2+x+1

- x 3 + 1 ≡ ( x + 1 ) ( x 2 + x + 1 ) x^3 + 1 \equiv (x + 1)(x^2 + x + 1) x3+1(x+1)(x2+x+1)(在 G F ( 2 ) GF (2) GF(2) 中, 2 x 2 ≡ 0 , 2 x ≡ 0 2x^2 \equiv 0, 2x \equiv 0 2x20,2x0),可分解;

- x 3 + x 2 + x + 1 ≡ ( x + 1 ) 3 x^3 + x^2 + x + 1 \equiv (x + 1)^3 x3+x2+x+1(x+1)3(在 G F ( 2 ) GF (2) GF(2) 中, 3 x 2 ≡ x 2 , 3 x ≡ x 3x^2 \equiv x^2, 3x \equiv x 3x2x2,3xx),可分解。

因此, G F ( 2 3 ) GF (2^3) GF(23) 上的不可约多项式为 x 3 + x + 1 , x 3 + x 2 + 1 x^3 + x + 1, x^3 + x^2 + 1 x3+x+1,x3+x2+1

n不可约多项式
1 x x x, x + 1 x + 1 x+1
2 x 2 + x + 1 x^2 + x + 1 x2+x+1
3 x 3 + x + 1 x^3 + x + 1 x3+x+1, x 3 + x 2 + 1 x^3 + x^2 + 1 x3+x2+1
4 x 4 + x + 1 x^4 + x + 1 x4+x+1, x 4 + x 3 + 1 x^4 + x^3 + 1 x4+x3+1, x 4 + x 3 + x 2 + x + 1 x^4 + x^3 + x^2 + x + 1 x4+x3+x2+x+1
5 x 5 + x 2 + 1 x^5 + x^2 + 1 x5+x2+1, x 5 + x 3 + 1 x^5 + x^3 + 1 x5+x3+1, x 5 + x 3 + x 2 + x + 1 x^5 + x^3 + x^2 + x + 1 x5+x3+x2+x+1, x 5 + x 4 + x 3 + x + 1 x^5 + x^4 + x^3 + x + 1 x5+x4+x3+x+1, x 5 + x 4 + x 3 + x 2 + 1 x^5 + x^4 + x^3 + x^2 + 1 x5+x4+x3+x2+1, x 5 + x 4 + x 2 + x + 1 x^5 + x^4 + x^2 + x + 1 x5+x4+x2+x+1

不可约多项式个数

莫比乌斯函数 μ ( n ) \mu (n) μ(n) 定义为:

μ ( n ) = { 1 若  n = 1 , ( − 1 ) k 若  n  可分解为  k  个互不相同的素数的乘积 , 0 若  n  含有素数的平方因子 . \mu (n) = \begin {cases} 1 & \text {若 } n = 1, \\ (-1)^k & \text {若 } n \text { 可分解为 } k \text { 个互不相同的素数的乘积}, \\ 0 & \text {若 } n \text { 含有素数的平方因子}. \end {cases} μ(n)= 1(1)k0 n=1, n 可分解为 k 个互不相同的素数的乘积, n 含有素数的平方因子.

G F ( q ) GF (q) GF(q) 上次数为 n n n 的不可约多项式的个数为:

L q ( n ) = 1 n ∑ d ∣ n μ ( n d ) q d L_q (n) = \frac {1}{n} \sum_{d \mid n} \mu\left (\frac {n}{d}\right) q^d Lq(n)=n1dnμ(dn)qd

其中 d ∣ n d \mid n dn 表示 d d d n n n 的正因子。

G F ( 2 n ) GF (2^n) GF(2n) 上,不可约多项式的个数如下表所示:

n不可约多项式个数
1 1 1 ( μ ( 1 1 ) 2 1 ) = 2 \frac {1}{1} \left ( \mu\left (\frac {1}{1}\right) 2^1 \right) = 2 11(μ(11)21)=2
2 1 2 ( μ ( 2 2 ) 2 2 + μ ( 2 1 ) 2 1 ) = 1 \frac {1}{2} \left ( \mu\left (\frac {2}{2}\right) 2^2 + \mu\left (\frac {2}{1}\right) 2^1 \right) = 1 21(μ(22)22+μ(12)21)=1
3 1 3 ( μ ( 3 3 ) 2 3 + μ ( 3 1 ) 2 1 ) = 2 \frac {1}{3} \left ( \mu\left (\frac {3}{3}\right) 2^3 + \mu\left (\frac {3}{1}\right) 2^1 \right) = 2 31(μ(33)23+μ(13)21)=2
4 1 4 ( μ ( 4 4 ) 2 4 + μ ( 4 2 ) 2 2 + μ ( 4 1 ) 2 1 ) = 3 \frac {1}{4} \left ( \mu\left (\frac {4}{4}\right) 2^4 + \mu\left (\frac {4}{2}\right) 2^2 + \mu\left (\frac {4}{1}\right) 2^1 \right) = 3 41(μ(44)24+μ(24)22+μ(14)21)=3
5 1 5 ( μ ( 5 5 ) 2 5 + μ ( 5 1 ) 2 1 ) = 6 \frac {1}{5} \left ( \mu\left (\frac {5}{5}\right) 2^5 + \mu\left (\frac {5}{1}\right) 2^1 \right) = 6 51(μ(55)25+μ(15)21)=6

上述结果与前表中的不可约多项式数量一致。

判断一个多项式是否为不可约多项式(或计算更高次数的不可约多项式)的一种直接方法是穷举验证:

对于 G F ( 2 n ) GF (2^n) GF(2n) 上的候选多项式,需验证其与所有次数大于 0 且不超过 ⌊ n / 2 ⌋ \lfloor n/2 \rfloor n/2 的多项式相除时均有余式(即不能被这些多项式整除)。这与判断一个整数是否为素数的思路类似(若一个整数不能被所有小于其平方根的整数整除,则为素数)。

更高效的判断方法可参考相关专业资料。

本原多项式

本原多项式个数计算

有限域 G F ( p n ) GF (p^n) GF(pn) 上本原多项式的个数为:

a p n ( n ) = ϕ ( p n − 1 ) n a_{p^n}(n) = \frac {\phi (p^n - 1)}{n} apn(n)=nϕ(pn1)

其中 ϕ \phi ϕ 为欧拉函数。

本原多项式求解

对于 G F ( 2 n ) GF (2^n) GF(2n) 上的本原多项式,可通过分解多项式 x 2 n − x x^{2^n} - x x2nx 得到。以下为 n = 1 n = 1 n=1 n = 5 n = 5 n=5 时的本原多项式及其验证:

n本原多项式
1 x + 1 x + 1 x+1
2 x 2 + x + 1 x^2 + x + 1 x2+x+1
3 x 3 + x + 1 x^3 + x + 1 x3+x+1, x 3 + x 2 + 1 x^3 + x^2 + 1 x3+x2+1
4 x 4 + x + 1 x^4 + x + 1 x4+x+1, x 4 + x 3 + 1 x^4 + x^3 + 1 x4+x3+1
5 x 5 + x 2 + 1 x^5 + x^2 + 1 x5+x2+1, x 5 + x 3 + 1 x^5 + x^3 + 1 x5+x3+1, x 5 + x 3 + x 2 + x + 1 x^5 + x^3 + x^2 + x + 1 x5+x3+x2+x+1, x 5 + x 4 + x 3 + x + 1 x^5 + x^4 + x^3 + x + 1 x5+x4+x3+x+1, x 5 + x 4 + x 3 + x 2 + 1 x^5 + x^4 + x^3 + x^2 + 1 x5+x4+x3+x2+1, x 5 + x 4 + x 2 + x + 1 x^5 + x^4 + x^2 + x + 1 x5+x4+x2+x+1
n x 2 n − x x^{2^n} - x x2nx 分解本原多项式
1 x 2 1 − x = x 2 − x ≡ x ( x + 1 ) x^{2^1} - x = x^2 - x \equiv x (x + 1) x21x=x2xx(x+1) x + 1 x + 1 x+1
2 x 4 − x ≡ x ( x + 1 ) ( x 2 + x + 1 ) x^4 - x \equiv x (x + 1)(x^2 + x + 1) x4xx(x+1)(x2+x+1) x 2 + x + 1 x^2 + x + 1 x2+x+1
3 x 8 − x ≡ x ( x + 1 ) ( x 3 + x 2 + 1 ) ( x 3 + x + 1 ) x^8 - x \equiv x (x + 1)(x^3 + x^2 + 1)(x^3 + x + 1) x8xx(x+1)(x3+x2+1)(x3+x+1) x 3 + x + 1 x^3 + x + 1 x3+x+1, x 3 + x 2 + 1 x^3 + x^2 + 1 x3+x2+1
4 x 16 − x ≡ x ( x + 1 ) ( x 2 + x + 1 ) ( x 4 + x + 1 ) ( x 4 + x 3 + 1 ) ( x 4 + x 3 + x 2 + x + 1 ) x^{16} - x \equiv x (x + 1)(x^2 + x + 1)(x^4 + x + 1)(x^4 + x^3 + 1)(x^4 + x^3 + x^2 + x + 1) x16xx(x+1)(x2+x+1)(x4+x+1)(x4+x3+1)(x4+x3+x2+x+1) x 4 + x + 1 x^4 + x + 1 x4+x+1, x 4 + x 3 + 1 x^4 + x^3 + 1 x4+x3+1

对于 n = 4 n = 4 n=4 x 4 + x 3 + x 2 + x + 1 x^4 + x^3 + x^2 + x + 1 x4+x3+x2+x+1 未被列为本原多项式的原因可参考专业文献。在部分本原多项式表中,通常选取项数最少(即非零系数最少)的多项式作为代表。


有限域、域内运算、不可约多项式与本原多项式

hqybeauty 已于 2024-10-29 11:11:32 修改

一、有限域(伽罗华域)

1.1 表示方法: GF ( p m ) \text{GF}(p^m) GF(pm),其中 p p p 为素数(素数是指仅能被 1 和自身整除的整数,如 3, 7, 11), m m m 为正整数。

1.2 定义:有限域是指元素个数有限的域。

二、有限域内运算

本节以有限域 GF ( 2 3 ) \text{GF}(2^3) GF(23) 为例,讨论加法、减法、乘法和除法四种基本运算。该有限域基于不可约多项式 f ( x ) = x 3 + x + 1 f(x) = x^3 + x + 1 f(x)=x3+x+1 构造,其中 α \alpha α f ( x ) f(x) f(x) 的一个根。

2.1 GF ( p m ) \text{GF}(p^m) GF(pm) 上的加法和减法均为模运算。

举例说明:
此处, x 2 + 1 x^2 + 1 x2+1 为二次多项式,可检验其在 GF ( 2 ) \text{GF}(2) GF(2) 中的根:

  • 代入 x = 0 x = 0 x=0 f ( 0 ) = 0 2 + 1 = 1 f(0) = 0^2 + 1 = 1 f(0)=02+1=1(非根)
  • 代入 x = 1 x = 1 x=1 f ( 1 ) = 1 2 + 1 = 2 m o d    2 = 0 f(1) = 1^2 + 1 = 2 \mod 2 = 0 f(1)=12+1=2mod2=0(是根)

结果不为 2,而是 0,最终需取模 2。

2.2 GF ( p m ) \text{GF}(p^m) GF(pm) 上的乘法同样需进行模运算:

α ⋅ α = α 2 \alpha \cdot \alpha = \alpha^2 αα=α2
α ⋅ ( α + 1 ) = α 2 + α \alpha \cdot (\alpha + 1) = \alpha^2 + \alpha α(α+1)=α2+α
( α 2 ) ⋅ ( α + 1 ) = α 3 + α 2 (\alpha^2) \cdot (\alpha + 1) = \alpha^3 + \alpha^2 (α2)(α+1)=α3+α2

随后利用 f ( x ) f(x) f(x) 进行约简:由 f ( x ) = 0 f(x) = 0 f(x)=0 可得 α 3 = α + 1 \alpha^3 = \alpha + 1 α3=α+1,因此:
α 3 + α 2 = ( α + 1 ) + α 2 = α 2 + α + 1 \alpha^3 + \alpha^2 = (\alpha + 1) + \alpha^2 = \alpha^2 + \alpha + 1 α3+α2=(α+1)+α2=α2+α+1

2.3 GF ( p m ) \text{GF}(p^m) GF(pm) 上的除法运算在实际应用中较少使用

其基本原理可简述如下:
在有限域中,除法可通过乘以逆元实现。进行元素除法时,需先确定对应元素的逆元。

求逆元

以寻找 α \alpha α 的逆元为例,可采用扩展欧几里得算法或直接验证。假设存在 x x x 使得 x ⋅ α = 1 x \cdot \alpha = 1 xα=1,则 x x x 即为 α \alpha α 的逆元。经计算可知, α 2 \alpha^2 α2 α \alpha α 的逆元,因 α ⋅ α 2 = α 3 = α + 1 \alpha \cdot \alpha^2 = \alpha^3 = \alpha + 1 αα2=α3=α+1

除法示例

1 α 2 = α \frac{1}{\alpha^2} = \alpha α21=α

因此:

α α 2 = α ⋅ 1 = α 3 = α + 1 \frac{\alpha}{\alpha^2} = \alpha \cdot {1} = \alpha^3 = \alpha+1 α2α=α1=α3=α+1

2.4 域内元素

α \alpha α 是该域的一个本原元,元素总数为 p m p^m pm,分别为 0 0 0 α i \alpha^i αi i i i 为非负整数)。

α i \alpha^i αi 的表达式

α i = u 0 + u 1 α + u 2 α 2 + ⋯ + u m − 1 α m − 1 \alpha^i = u_0 + u_1\alpha + u_2\alpha^2 + \dots + u_{m-1}\alpha^{m-1} αi=u0+u1α+u2α2++um1αm1

满足特定规则:前 m m m 个元素 α 0 ∼ α m − 1 \alpha^0 \sim \alpha^{m-1} α0αm1 可直接表示, α m \alpha^m αm 及更高次幂的元素均可通过 0 0 0 α 0 ∼ α m − 1 \alpha^0 \sim \alpha^{m-1} α0αm1 表示。

GF ( 2 3 ) \text{GF}(2^3) GF(23) 为例, α i \alpha^i αi 的元素如下:
α 0 = 1 \alpha^0 = 1 α0=1
α 1 = α \alpha^1 = \alpha α1=α
α 2 = α 2 \alpha^2 = \alpha^2 α2=α2
α 3 = α + 1 \alpha^3 = \alpha + 1 α3=α+1(关于这一点的详细解释将在 四. 本原多项式部分给出);
α 4 = α 3 ⋅ α = ( α + 1 ) ⋅ α = α 2 + α \alpha^4 = \alpha^3 \cdot \alpha = (\alpha + 1) \cdot \alpha = \alpha^2 + \alpha α4=α3α=(α+1)α=α2+α
α 5 = α 4 ⋅ α = ( α 2 + α ) ⋅ α = α 3 + α 2 = α 2 + α + 1 \alpha^5 = \alpha^4 \cdot \alpha = (\alpha^2 + \alpha) \cdot \alpha = \alpha^3 + \alpha^2 = \alpha^2 + \alpha + 1 α5=α4α=(α2+α)α=α3+α2=α2+α+1
α 6 = α 5 ⋅ α = ( α 2 + α + 1 ) ⋅ α = α 3 + α 2 + α = α 2 + 1 \alpha^6 = \alpha^5 \cdot \alpha = (\alpha^2 + \alpha + 1) \cdot \alpha = \alpha^3 + \alpha^2 + \alpha = \alpha^2 + 1 α6=α5α=(α2+α+1)α=α3+α2+α=α2+1(因 2 α m o d    2 = 0 2\alpha \mod 2 = 0 2αmod2=0)。

因此, GF ( 2 3 ) \text{GF}(2^3) GF(23) 的元素为 0 , 1 , α , α 2 , α + 1 , α 2 + α , α 2 + α + 1 , α 2 + 1 0, 1, \alpha, \alpha^2, \alpha + 1, \alpha^2 + \alpha, \alpha^2 + \alpha + 1, \alpha^2 + 1 0,1,α,α2,α+1,α2+α,α2+α+1,α2+1,共 8 个。(继续计算更高次幂的元素会发现其与前述元素重复,即呈现周期性)。

三、不可约多项式

3.1 定义

不可约多项式是指在指定域上不能分解为两个次数更低的非零多项式乘积的多项式。在有限域中,不可约多项式可类比于整数中的素数,即仅能被 1 和其自身整除的多项式。

3.2 求取方法

GF ( p m ) \text{GF}(p^m) GF(pm) 中,不可约多项式的系数为 GF ( p ) \text{GF}(p) GF(p) 中的元素(即 0 , 1 , 2 , … , p − 1 0, 1, 2, \ldots, p-1 0,1,2,,p1),且最高次项的次数为 m m m。检验其不可约性的方法为:将 GF ( p ) \text{GF}(p) GF(p) 中的所有元素代入多项式,若结果均不为 0 0 0,则该多项式为不可约多项式。

3.3 示例

GF ( 2 2 ) \text{GF}(2^2) GF(22) 为例,寻找其不可约多项式。首先列出所有最高次项次数为 2 且系数为 0 0 0 1 1 1 的多项式: x 2 + x + 1 x^2 + x + 1 x2+x+1 x 2 + x x^2 + x x2+x x 2 + 1 x^2 + 1 x2+1 x 2 x^2 x2

检验可知

x 2 x^2 x2 x 2 + x x^2 + x x2+x 均可被 x x x 整除; x 2 + 1 ≡ ( x + 1 ) 2 x^2 + 1 \equiv (x + 1)^2 x2+1(x+1)2(在 GF ( 2 ) \text{GF}(2) GF(2) 2 x = 0 2x = 0 2x=0),可被 x + 1 x + 1 x+1 整除,因此它们均非不可约多项式。剩余的 x 2 + x + 1 x^2 + x + 1 x2+x+1 无法被其他多项式整除,且代入 0 0 0 1 1 1 检验的结果均不为 0 0 0,故 x 2 + x + 1 x^2 + x + 1 x2+x+1 GF ( 2 2 ) \text{GF}(2^2) GF(22) 上的不可约多项式。

四、本原多项式

4.1 定义

本原多项式 p ( x ) p(x) p(x) 是指定义在某有限域上的多项式,其根为该域的本原元 α \alpha α(即 p ( α ) = 0 p(\alpha) = 0 p(α)=0)。本原元是有限域中的一个元素,通过不断自乘可生成该域的所有非零元素。

注:本原多项式必定是不可约多项式,但不可约多项式未必是本原多项式。

4.2 补充说明

GF ( 2 3 ) \text{GF}(2^3) GF(23) 为例,其不可约多项式 x 3 + x 2 + 1 x^3 + x^2 + 1 x3+x2+1 x 3 + x + 1 x^3 + x + 1 x3+x+1 均为本原多项式。在第二部分的示例中,正是选用 x 3 + x + 1 x^3 + x + 1 x3+x+1 作为本原多项式 p ( x ) p(x) p(x) 来生成该域的所有元素。

在计算 α 3 \alpha^3 α3 时,因 α \alpha α 是该域的本原元,代入本原多项式 p ( x ) = x 3 + x + 1 p(x) = x^3 + x + 1 p(x)=x3+x+1 可得 p ( α ) = 0 p(\alpha) = 0 p(α)=0,即 α 3 + α + 1 = 0 \alpha^3 + \alpha + 1 = 0 α3+α+1=0,故 α 3 = α + 1 \alpha^3 = \alpha + 1 α3=α+1(域内运算中无负数,运算结果按前述模运算规则处理)。

计算 α 7 \alpha^7 α7 可知其结果为 1 1 1,更高次幂的元素将重复域内已有的元素,即通过本原多项式可生成该域的所有元素。


不可约多项式与本原多项式

不可约多项式与本原多项式是抽象代数(尤其是多项式环、域论等分支)中的核心概念,它们在应用中紧密关联(例如有限域上的本原多项式必为不可约多项式)。它们不仅是纯数学研究的基础,更在密码学、编码、通信等工程领域发挥着不可替代的作用。

一、概念解析

1. 不可约多项式

  • 定义:在给定的多项式环 R [ x ] R[x] R[x](其中 R R R 通常是整数环 Z \mathbb{Z} Z、域 F F F 等)中,一个次数 ≥ 1 \geq 1 1 的多项式 f ( x ) f(x) f(x) 若不能分解为两个次数更低的多项式 g ( x ) , h ( x ) ∈ R [ x ] g(x), h(x) \in R[x] g(x),h(x)R[x] 的乘积(即 f ( x ) = g ( x ) h ( x ) f(x) = g(x)h(x) f(x)=g(x)h(x) 仅当 g ( x ) g(x) g(x) h ( x ) h(x) h(x) R R R 中的单位元,例如常数多项式),则称 f ( x ) f(x) f(x)不可约多项式

    • 例:在实数域 R [ x ] \mathbb{R}[x] R[x] 中, x 2 + 1 x^2 + 1 x2+1 是不可约的;在整数环 Z [ x ] \mathbb{Z}[x] Z[x] 中, 2 x + 2 2x + 2 2x+2 是可约的(因为 2 ( x + 1 ) 2(x + 1) 2(x+1),而 2 2 2 是整数环的非单位元),而 x + 1 x + 1 x+1 是不可约的。
  • 核心性质

    • 不可约性与“系数环/域”密切相关:同一多项式在不同环/域上可能有不同的可约性。例如, x 2 − 2 x^2 - 2 x22 Q [ x ] \mathbb{Q}[x] Q[x] 中是不可约的,但在 R [ x ] \mathbb{R}[x] R[x] 中可分解为 ( x − 2 ) ( x + 2 ) (x - \sqrt{2})(x + \sqrt{2}) (x2 )(x+2 )
    • 不可约多项式是多项式环中的“素元”,类似于整数中的素数,可用于多项式的唯一因式分解(例如,在唯一因式分解环上的多项式可以唯一分解为不可约多项式的乘积)。

2. 本原多项式

  • 定义:根据系数环的不同,本原多项式的定义略有差异,最常见的两种场景:

    • 整数环 Z [ x ] \mathbb{Z}[x] Z[x]:若多项式 f ( x ) = a n x n + ⋯ + a 1 x + a 0 f(x) = a_nx^n + \dots + a_1x + a_0 f(x)=anxn++a1x+a0 的系数 a 0 , a 1 , … , a n a_0, a_1, \dots, a_n a0,a1,,an 的最大公因子为 1,则称 f ( x ) f(x) f(x)本原多项式
      • 例: 2 x + 3 2x + 3 2x+3 是本原多项式(系数的最大公因子为 1),而 2 x + 4 2x + 4 2x+4 不是(系数的最大公因子为 2)。
    • 有限域 F q \mathbb{F}_q Fq:若多项式 f ( x ) f(x) f(x) 的根在其分裂域中生成乘法群(循环群) F q n ∗ \mathbb{F}_{q^n}^* Fqn,则称 f ( x ) f(x) f(x)本原多项式(此时 f ( x ) f(x) f(x) 的阶为 q n − 1 q^n - 1 qn1,即最小正整数 k k k 使得 f ( x ) ∣ x k − 1 f(x) \mid x^k - 1 f(x)xk1 q n − 1 q^n - 1 qn1)。
      • 例:在有限域 F 2 \mathbb{F}_2 F2 中, x 3 + x + 1 x^3 + x + 1 x3+x+1 是本原多项式(其阶为 2 3 − 1 = 7 2^3 - 1 = 7 231=7,其根生成 F 8 ∗ \mathbb{F}_8^* F8)。
  • 核心性质

    • 整数环上:高斯引理——两个本原多项式的乘积仍是本原多项式;任何整系数多项式都可以写成一个整数与一个本原多项式的乘积(本质上是“提取系数的最大公因子”)。
    • 有限域上:本原多项式一定是不可约多项式(反之未必),且是构造有限域扩张的重要工具。

二、关联与区别

维度不可约多项式本原多项式
核心特征不能分解为更低次多项式的乘积(依赖系数环/域)整数环上:系数互素;有限域上:根生成乘法群(阶为 q n − 1 q^n - 1 qn1
依赖范围与系数所在的环/域直接相关(同一多项式在不同域上可约性可能不同)整数环上仅依赖系数的最大公因子;有限域上依赖其阶与分裂域结构
包含关系有限域上的本原多项式一定是不可约多项式,但不可约多项式未必是本原多项式整数环上的本原多项式可能可约(例如 ( x + 1 ) ( x + 2 ) = x 2 + 3 x + 2 (x + 1)(x + 2) = x^2 + 3x + 2 (x+1)(x+2)=x2+3x+2 是本原多项式但可约)
类比整数类似“素数”(不可分解)整数环上类似“系数无公共因子的多项式”;有限域上类似“生成元对应的多项式”

三、应用领域

  1. 密码学与编码理论

    • 不可约多项式:用于构造循环码(如 BCH 码、RS 码)的生成多项式,确保编码的纠错能力;在公钥密码学(如椭圆曲线加密)中,不可约多项式用于定义有限域上的曲线方程。
    • 有限域上的本原多项式:是线性反馈移位寄存器(LFSR)的核心,用于生成最大周期的伪随机序列(周期为 2 n − 1 2^n - 1 2n1 时,序列随机性最优),广泛应用于流密码、扩频通信等。
  2. 有限域构造与代数扩张

    • 不可约多项式是构造有限域的基础:对于素域 F p \mathbb{F}_p Fp,若 f ( x ) f(x) f(x) F p [ x ] \mathbb{F}_p[x] Fp[x] 上的 n n n 次不可约多项式,则 F p [ x ] / ( f ( x ) ) ≅ F p n \mathbb{F}_p[x]/(f(x)) \cong \mathbb{F}_{p^n} Fp[x]/(f(x))Fpn(有限域的唯一存在性)。
    • 本原多项式:在有限域 F p n \mathbb{F}_{p^n} Fpn 中,本原多项式的根是乘法群的生成元,可简化域中元素的表示(例如用生成元的幂次表示所有非零元素),便于运算实现。
  3. 数论与算法

    • 整数环上的本原多项式:通过高斯引理,可以将整系数多项式的因式分解问题转化为本原多项式的分解,简化数论中的多项式分析(例如丢番图方程求解)。
    • 不可约多项式的判定算法(如艾森斯坦判别法、Berlekamp 算法)是计算代数的核心工具,用于多项式因式分解、符号计算等。

本原多项式需满足以下两个核心条件:

  1. 不可约性:在二元域 GF ( 2 ) \text{GF}(2) GF(2) 中,该多项式不能分解为两个次数更低的非零多项式的乘积。
  2. 阶数匹配:其阶数(即满足 x m ≡ 1 ( m o d f ( x ) ) x^m \equiv 1 \pmod{f(x)} xm1(modf(x)) 的最小正整数 m m m)必须等于 2 n − 1 2^n - 1 2n1,其中 n n n 为多项式的次数。

只有同时满足上述两个条件的多项式,才能被认定为二元域 GF ( 2 ) \text{GF}(2) GF(2) 上的本原多项式。

常用本原多项式

 

n n n本原多项式(代数式)2 进数表示法8 进数表示法
2 x 2 + x + 1 x^2 + x + 1 x2+x+11117
3 x 3 + x + 1 x^3 + x + 1 x3+x+1101113
4 x 4 + x + 1 x^4 + x + 1 x4+x+11001123
5 x 5 + x 2 + 1 x^5 + x^2 + 1 x5+x2+110010145
6 x 6 + x + 1 x^6 + x + 1 x6+x+11000011103
7 x 7 + x 3 + 1 x^7 + x^3 + 1 x7+x3+110001001211
8 x 8 + x 4 + x 3 + x 2 + 1 x^8 + x^4 + x^3 + x^2 + 1 x8+x4+x3+x2+1100011101435
9 x 9 + x 4 + 1 x^9 + x^4 + 1 x9+x4+110001000011021
10 x 10 + x 3 + 1 x^{10} + x^3 + 1 x10+x3+1100000100012011
11 x 11 + x 2 + 1 x^{11} + x^2 + 1 x11+x2+11000000010014005
12 x 12 + x 6 + x 4 + x + 1 x^{12} + x^6 + x^4 + x + 1 x12+x6+x4+x+110010100001110123
13 x 13 + x 4 + x 3 + x + 1 x^{13} + x^4 + x^3 + x + 1 x13+x4+x3+x+1100001100011120033
14 x 14 + x 10 + x 6 + x + 1 x^{14} + x^{10} + x^6 + x + 1 x14+x10+x6+x+110001000100001142103
15 x 15 + x + 1 x^{15} + x + 1 x15+x+1100000000000011100003
16 x 16 + x 12 + x 3 + x + 1 x^{16} + x^{12} + x^3 + x + 1 x16+x12+x3+x+11001000000010011210013
17 x 17 + x 3 + 1 x^{17} + x^3 + 1 x17+x3+110000000000001001400011
18 x 18 + x 7 + 1 x^{18} + x^7 + 1 x18+x7+1100000010000000011000201
19 x 19 + x 5 + x 2 + x + 1 x^{19} + x^5 + x^2 + x + 1 x19+x5+x2+x+1100000000100011112000047
20 x 20 + x 3 + 1 x^{20} + x^3 + 1 x20+x3+110000000000000100014000011
21 x 21 + x 2 + 1 x^{21} + x^2 + 1 x21+x2+11000000000000000100110000005
22 x 22 + x + 1 x^{22} + x + 1 x22+x+110000000000000000001120000003
23 x 23 + x 5 + 1 x^{23} + x^5 + 1 x23+x5+110000000000000010000140000041
24 x 24 + x 7 + x 2 + x + 1 x^{24} + x^7 + x^2 + x + 1 x24+x7+x2+x+1100000010000000001111100000207
25 x 25 + x 3 + 1 x^{25} + x^3 + 1 x25+x3+110000000000000001001200000011

表格中的实体是不同次数 n n n 对应的本原多项式代数式及其二进制、八进制表示,常用于编码理论、通信等领域的数学计算,例如构造线性反馈移位寄存器等场景。

转换示例

示例 1:8 阶多项式 x 8 + x 4 + x 3 + x 2 + 1 x^8 + x^4 + x^3 + x^2 + 1 x8+x4+x3+x2+1

转换为八进制表示的步骤如下:

一、分析多项式的系数结构

该多项式定义在二元域 GF ( 2 ) \text{GF}(2) GF(2) 上,系数只能是 0 或 1。多项式的最高次数为 8,因此涉及的次数范围是 0 到 8(共 9 个次数)。

非零项包括:

  • x 8 x^8 x8(次数 8)
  • x 4 x^4 x4(次数 4)
  • x 3 x^3 x3(次数 3)
  • x 2 x^2 x2(次数 2)
  • x 0 x^0 x0(常数项,次数 0)

其余次数(7、6、5、1)的系数均为 0。

系数分布为:
次数 8:1,次数 7:0,次数 6:0,次数 5:0,次数 4:1,次数 3:1,次数 2:1,次数 1:0,次数 0:1

二、写出二进制表示

按“次数从高到低”(从次数 8 到次数 0)排列系数,得到二进制数:
1(8 次), 0(7 次), 0(6 次), 0(5 次), 1(4 次), 1(3 次), 1(2 次), 0(1 次), 1(0 次)

对应的二进制数为:100011101

三、转换为八进制

八进制转换规则:将二进制数从右往左每 3 位分为一组(不足 3 位时左侧补 0),每组对应一个八进制数字(0-7)。

  1. 检查二进制位数
    二进制数 100011101 100011101 100011101 共 9 位,恰好是 3 的倍数,无需补 0。

  2. 分组并转换
    按每 3 位分组:

    • 第一组(左起): 100 100 100 → 对应八进制数字 4 1 × 4 + 0 × 2 + 0 × 1 = 4 1×4 + 0×2 + 0×1 = 4 1×4+0×2+0×1=4);
    • 第二组: 011 011 011 → 对应八进制数字 3 0 × 4 + 1 × 2 + 1 × 1 = 3 0×4 + 1×2 + 1×1 = 3 0×4+1×2+1×1=3);
    • 第三组(右起): 101 101 101 → 对应八进制数字 5 1 × 4 + 0 × 2 + 1 × 1 = 5 1×4 + 0×2 + 1×1 = 5 1×4+0×2+1×1=5)。

最终结果

多项式 x 8 + x 4 + x 3 + x 2 + 1 x^8 + x^4 + x^3 + x^2 + 1 x8+x4+x3+x2+1 的八进制表示为:435

示例 2: x 15 + 1 x^{15} + 1 x15+1

1. 同一多项式的不同表示形式

  • x 15 + 1 x^{15} + 1 x15+1 是该多项式的 代数表达式
  • 1000000000000001 是该多项式的 二进制系数表示
  • 32769 是该二进制数对应的 十进制数值

这种对应关系在多项式分解、编码理论(如 CRC 校验)、有限域运算等场景中常用,通过二进制或十进制可简化多项式的存储与计算。

2. 多项式的 “二进制系数表示”

  • 对于多项式 f ( x ) = a n x n + ⋯ + a 1 x + a 0 f (x) = a_nx^n + \cdots + a_1x + a_0 f(x)=anxn++a1x+a0,其系数 a i ∈ { 0 , 1 } a_i \in \{0, 1\} ai{0,1}(仅考虑二进制系数时);
  • 二进制数的第 i i i 位(从右往左,低位开始计数)对应系数 a i a_i ai,若 a i = 1 a_i = 1 ai=1 则该位为 1,否则为 0。

对于 x 15 + 1 x^{15} + 1 x15+1

  • 最高次项为 x 15 x^{15} x15,系数 a 15 = 1 a_{15} = 1 a15=1,对应二进制数的第 15 位(从右数第 16 位)为 1;
  • 常数项为 1 = 1 ⋅ x 0 1 = 1 \cdot x^0 1=1x0,系数 a 0 = 1 a_0 = 1 a0=1,对应二进制数的第 0 位(最右位)为 1;
  • 其余项( x 14 x^{14} x14 x 1 x^1 x1)的系数均为 0,对应二进制数的中间位均为 0。

因此, x 15 + 1 x^{15} + 1 x15+1 的二进制系数表示为 1000000000000001(共 16 位,第 15 位和第 0 位为 1,其余为 0)。

3. 多项式的 “十进制系数表示”

二进制数转换为十进制数的规则是 “按位加权求和”,即每一位的数值乘以 2 k 2^k 2k k k k 为该位的位数,从 0 开始计数):

对于二进制 1000000000000001

  • 最左位(第 15 位)的 1 对应 2 15 = 32768 2^{15} = 32768 215=32768
  • 最右位(第 0 位)的 1 对应 2 0 = 1 2^0 = 1 20=1
  • 总和为 32768 + 1 = 32769 32768 + 1 = 32769 32768+1=32769,即该二进制数对应的十进制数值为 32769。

via:

内容概要:该研究通过在黑龙江省某示范村进行24小时实地测试,比较了燃煤炉具与自动/手动进料生物质炉具的污染物排放特征。结果显示,生物质炉具相比燃煤炉具显著降低了PM2.5、CO和SO2的排放(自动进料分别降低41.2%、54.3%、40.0%;手动进料降低35.3%、22.1%、20.0%),但NOx排放未降低甚至有所增加。研究还发现,经济性和便利性是影响生物质炉具推广的重要因素。该研究不仅提供了实际排放数据支持,还通过Python代码详细复现了排放特征比较、减排效果计算和结果可视化,进一步探讨了燃料性质、动态排放特征、碳平衡计算以及政策建议。 适合人群:从事环境科学研究的学者、政府环保部门工作人员、能源政策制定者、关注农村能源转型的社会人士。 使用场景及目标:①评估生物质炉具在农村地区的推广潜力;②为政策制定者提供科学依据,优化补贴政策;③帮助研究人员深入了解生物质炉具的排放特征和技术改进方向;④为企业研发更高效的生物质炉具提供参考。 其他说明:该研究通过大量数据分析和模拟,揭示了生物质炉具在实际应用中的优点和挑战,特别是NOx排放增加的问题。研究还提出了多项具体的技术改进方向和政策建议,如优化进料方式、提高热效率、建设本地颗粒厂等,为生物质炉具的广泛推广提供了可行路径。此外,研究还开发了一个智能政策建议生成系统,可以根据不同地区的特征定制化生成政策建议,为农村能源转型提供了有力支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值