题目描述
有一颗 N 个结点树,编号是 1 至
N 。如果删除结点 i ,可以使得剩下的各自子树的结点数量都不超过N÷2 ,那么结点i被称为“可割”点。根据前面的意思,一棵树可能有多个“可割”点。把所有的可割点按照结点的编号从小到大输出。如果没有“可割”点,那么输出“NONE”。
输入格式 1789.in
第一行,一个整数 N 。
接下来有
N−1 行,每行两个整数: a 和b ,表示两个结点之间有一条边。
输出格式 1789.out
若干行,每行是一个“可割”点的编号。编号从小到大输出。
输入样例 1789.in
10
1 2
2 3
3 4
4 5
6 7
7 8
8 9
9 10
3 8
输出样例 1789.out
3
8
题目描述没有什么多余的背景,应该都能理解。
我们读题的时候,除了看数据量来决定我们的算法,还有一定要抓住关键字词句。
“使得剩下的各自子树的结点数量都不超过 N÷2 ”什么意思?也就意味着割去某点后,剩下的子树的结点数量的最大值也不会超过 N÷2 。
那我们因势利导,就记 froot 为删去 root 之后,剩下的所有子树中,结点数量的最大值。最后只要枚举 root ,如果 froot 不超过 N÷2 就输出,即可。
老规矩,看样例:
样例中 3 是可割点,我们就拿 3 来分析吧。把 3 删了之后,是这个样子的:
删去 3 之后,剩下三棵子树,结点数量分别为 2、2 和 5,都不超过
N÷2=10÷2=5
,因此 3 是可割点。
从上面的例子可以看出来,删去一个点之后,剩下的子树有该点儿子数量 + 1 棵,其中它的每个儿子都独立为 1 棵子树,而根结点与它的联系也断了,又是一棵子树。那么各棵新子树的结点个数如何求呢?
不妨再记 croot 为以 root 为根的子树的结点个数。
不难得到,对于所有以被删结点
root
的儿子
i
为根的子树,结点数量就是
c[] 数组可以在做树型 DP 递归求解时顺便求得,比较容易。
状态转移方程:
时间复杂度: O(n)
参考代码:
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <vector>
using namespace std;
const int maxn = 1e5;
int n;
vector <int> g[maxn];
bool vis[maxn];
int cnt[maxn], cutmax[maxn];
void dfs(int root) {
vis[root] = true;
cnt[root] = 1; //以 root 为根结点的子树的结点数
for (int i = 0; i < g[root].size(); i++)
if (!vis[g[root][i]]) {
dfs(g[root][i]);
cnt[root] += cnt[g[root][i]];
cutmax[root] = max(cutmax[root], cnt[g[root][i]]);
}
cutmax[root] = max(cutmax[root], n - cnt[root]); //考虑以整棵树根结点为根的子树
}
int main(void) {
freopen("1789.in", "r", stdin);
freopen("1789.out", "w", stdout);
scanf("%d", &n);
for (int i = 1; i < n; i++) {
int a, b;
scanf("%d%d", &a, &b);
g[a].push_back(b);
g[b].push_back(a);
}
memset(vis, false, sizeof vis);
memset(cnt, 0, sizeof cnt);
memset(cutmax, 0, sizeof cutmax); //删去 root 后其余子树的最大结点数
dfs(1);
bool found = false;
for (int i = 1; i <= n; i++)
if ((cutmax[i] << 1) <= n) {
found = true;
printf("%d\n", i);
}
if (!found) puts("NONE");
return 0;
}
最后,yhf 说似乎可以证明,至少存在一个可割点。但我暂时还不会证。