[SMOJ1789]可割点

97 篇文章 0 订阅
11 篇文章 0 订阅

题目描述

有一颗 N 个结点树,编号是 1 至 N。如果删除结点 i ,可以使得剩下的各自子树的结点数量都不超过 N÷2,那么结点i被称为“可割”点。

根据前面的意思,一棵树可能有多个“可割”点。把所有的可割点按照结点的编号从小到大输出。如果没有“可割”点,那么输出“NONE”。

输入格式 1789.in

第一行,一个整数 N

接下来有 1 行,每行两个整数: a b,表示两个结点之间有一条边。

输出格式 1789.out

若干行,每行是一个“可割”点的编号。编号从小到大输出。

输入样例 1789.in

10
1 2
2 3
3 4
4 5
6 7
7 8
8 9
9 10
3 8

输出样例 1789.out

3
8


题目描述没有什么多余的背景,应该都能理解。

我们读题的时候,除了看数据量来决定我们的算法,还有一定要抓住关键字词句。

“使得剩下的各自子树的结点数量都不超过 N÷2 ”什么意思?也就意味着割去某点后,剩下的子树的结点数量的最大值也不会超过 N÷2

那我们因势利导,就记 froot 为删去 root 之后,剩下的所有子树中,结点数量的最大值。最后只要枚举 root ,如果 froot 不超过 N÷2 就输出,即可。

老规矩,看样例:

样例中 3 是可割点,我们就拿 3 来分析吧。把 3 删了之后,是这个样子的:

删去 3 之后,剩下三棵子树,结点数量分别为 2、2 和 5,都不超过 N÷2=10÷2=5 ,因此 3 是可割点。

从上面的例子可以看出来,删去一个点之后,剩下的子树有该点儿子数量 + 1 棵,其中它的每个儿子都独立为 1 棵子树,而根结点与它的联系也断了,又是一棵子树。那么各棵新子树的结点个数如何求呢?

不妨再记 croot 为以 root 为根的子树的结点个数。

不难得到,对于所有以被删结点 root 的儿子 i 为根的子树,结点数量就是 ci。而以根结点为根的那一棵新子树,结点数量为 c1croot ,也可以写成 ncroot

c[] 数组可以在做树型 DP 递归求解时顺便求得,比较容易。

状态转移方程:

froot=max{ncroot,max{cson}}

时间复杂度: O(n)

参考代码:

#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <vector>

using namespace std;

const int maxn = 1e5;

int n;
vector <int> g[maxn];

bool vis[maxn];
int cnt[maxn], cutmax[maxn];

void dfs(int root) {
    vis[root] = true;
    cnt[root] = 1; //以 root 为根结点的子树的结点数
    for (int i = 0; i < g[root].size(); i++)
        if (!vis[g[root][i]]) {
            dfs(g[root][i]);
            cnt[root] += cnt[g[root][i]];
            cutmax[root] = max(cutmax[root], cnt[g[root][i]]);
        }
    cutmax[root] = max(cutmax[root], n - cnt[root]); //考虑以整棵树根结点为根的子树
}

int main(void) {
    freopen("1789.in", "r", stdin);
    freopen("1789.out", "w", stdout);

    scanf("%d", &n);
    for (int i = 1; i < n; i++) {
        int a, b;
        scanf("%d%d", &a, &b);
        g[a].push_back(b);
        g[b].push_back(a);
    }

    memset(vis, false, sizeof vis);
    memset(cnt, 0, sizeof cnt);
    memset(cutmax, 0, sizeof cutmax); //删去 root 后其余子树的最大结点数
    dfs(1);

    bool found = false;
    for (int i = 1; i <= n; i++)
        if ((cutmax[i] << 1) <= n) {
            found = true;
            printf("%d\n", i);
        }
    if (!found) puts("NONE");
    return 0;
}

最后,yhf 说似乎可以证明,至少存在一个可割点。但我暂时还不会证。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值