[SMOJ1811]正方形个数

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u013686535/article/details/70255422

题目描述

给定 n 个点,求可以组成的正方形的个数。(这些正方形可以倾斜)
数据范围: n1000,点的坐标 20000

输入格式 1811.in

有多组测试数据。
对于每一组数据:
第 1 行为一个整数 n。表示点的个数
第 2 至 n+1 行,每行两个数 Xi,Yi,表示每个点的坐标。
n=0 时,输入结束。

输出格式 1811.out

对于每组数据,输出一个整数。为组成正方形的个数

输入样例 1811.in

4
1 0
0 1
1 1
0 0
9
0 0
1 0
2 0
0 2
1 2
2 2
0 1
1 1
2 1
4
-2 5
3 7
0 0
5 2
0

输出样例 1811.out

1
6
1


这道题目的题意比较显然,就是要找四个点组成正方形,但是这些正方形的边不一定平行于 x 轴和 y 轴。

可以看到,n1000,如果 n2 级别的时间复杂度还是可以承受的,但只要达到 n3 就必然会 TLE。因此我们只能从考虑枚举两个点的角度入手。

既然是要枚举两个点,那么必然要通过一些判断方法得到另外两个点。于是不妨从正方形的性质入手,最显然的一条就是两组对边分别平行且相等,四个角都为 90 度。
如图:

我们现在已经枚举了组成正方形一条边的点 A(x1,y1) 和点 B(x2,y2),想要求出能够与它们组成正方形的 C 点和 D 点坐标,需要应用到全等三角形的知识。

作点 E(x2,y1)。作点 F 使 EF//y 轴,CF//x 轴。
AE=x2x1,BE=y2y1
ABCD 为正方形
AB=BC,ABC=90°
1+2=90°
ABE,2+3=90°
1=3
ABEBCF 中,
E=F=90°,1=3,AB=BC
ABEBCF
AE=BF,BE=CF
C(x2(y2y1),y2+(x2x1))

于是这样我们就求得了点 C 的坐标,同理可以得到点 D。但是要注意,还有往下面的一种情况,其实也是类似的。

总的做法:将每个点 hash 保存。之后再枚举两个点(注意不是嵌套的四重循环),求得能与它们组成正方形的两个点坐标,如果两个点都存在,那么可以组成一种正方形。
时间复杂度为 O(n2)

但是要注意,这样计数,每个正方形会被计算四次(想一想,为什么),因此最终的答案要除以 4。

参考代码:

#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>

using namespace std;

const int maxn = 1e3 + 10;
const int prime = 30001;

struct Data { int x, y; bool bo; };

int n;
int x[maxn], y[maxn];
Data hash[prime];

void insert(int xx, int yy) {
    int h = (xx * xx + yy * yy) % prime;
    int p = h;
    while ((hash[p].x != xx || hash[p].y != yy) && hash[p].bo) {
        p += h % 107 + 1;
        if (p >= prime) p -= prime;
    }
    hash[p].x = xx; hash[p].y = yy;
    hash[p].bo = true;
}

bool find(int xx, int yy) {
    int h = (xx * xx + yy * yy) % prime;
    int p = h;
    while ((hash[p].x != xx || hash[p].y != yy) && hash[p].bo) {
        p += h % 107 + 1;
        if (p >= prime) p -= prime;
    }
    return hash[p].bo;
}

int main(void) {
    freopen("1811.in", "r", stdin);
    freopen("1811.out", "w", stdout);
    while (~scanf("%d", &n)) {
        if (!n) break;
        memset(hash, 0, sizeof hash);
        for (int i = 0; i < n; i++) {
            scanf("%d%d", &x[i], &y[i]); 
            insert(x[i], y[i]);
        }

        int ans = 0;
        for (int i = 0; i + 1 < n; i++)
            for (int j = i + 1; j < n; j++) {
                int xc = x[i] - x[j], yc = y[i] - y[j];
                if (find(x[i] - yc, y[i] + xc) && find(x[j] - yc, y[j] + xc)) ans++;
                if (find(x[i] + yc, y[i] - xc) && find(x[j] + yc, y[j] - xc)) ans++;
            }
        printf("%d\n", ans >> 2);
    }
    return 0;
}
阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页