等我搬这题笔记的时候,lgj 已经把 smoj 上对应的题封了,所以抱歉,只能搬原题(NOIP2009提高组T3)过来,不便之处敬请原谅。
题目描述
C 国有 n 个大城市和
m 条道路,每条道路连接这 n 个城市中的某两个城市。任意两个城市之间最多只有一条道路直接相连。这m 条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双向通行的道路在统计条数时也计为 1 条。C 国幅员辽阔,各地的资源分布情况各不相同,这就导致了同一种商品在不同城市的价格不一定相同。但是,同一种商品在同一个城市的买入价和卖出价始终是相同的。
商人阿龙来到 C 国旅游。当他得知同一种商品在不同城市的价格可能会不同这一信息之后,便决定在旅游的同时,利用商品在不同城市中的差价赚回一点旅费。设 C 国 n 个城市的标号从 1~
n ,阿龙决定从 1 号城市出发,并最终在 n 号城市结束自己的旅行。在旅游的过程中,任何城市可以重复经过多次,但不要求经过所有n 个城市。阿龙通过这样的贸易方式赚取旅费:他会选择一个经过的城市买入他最喜欢的商品――水晶球,并在之后经过的另一个城市卖出这个水晶球,用赚取的差价当做旅费。由于阿龙主要是来 C 国旅游,他决定这个贸易只进行最多一次,当然,在赚不到差价的情况下他就无需进行贸易。假设 C 国有 5 个大城市,城市的编号和道路连接情况如下图,单向箭头表示这条道路为单向通行,双向箭头表示这条道路为双向通行。
假设 1~ n 号城市的水晶球价格分别为 4,3,5,6,1。
阿龙可以选择如下一条线路:1->2->3->5,并在 2 号城市以 3 的价格买入水晶球,在 3 号城市以 5 的价格卖出水晶球,赚取的旅费数为 2。
阿龙也可以选择如下一条线路 1->4->5->4->5,并在第 1 次到达 5 号城市时以 1 的价格买入水晶球,在第 2 次到达 4 号城市时以 6 的价格卖出水晶球,赚取的旅费数为 5。
现在给出
n 个城市的水晶球价格, m 条道路的信息(每条道路所连接的两个城市的编号以及该条道路的通行情况)。请你告诉阿龙,他最多能赚取多少旅费。
输入输出格式
输入格式:
第一行包含 2 个正整数n 和 m ,中间用一个空格隔开,分别表示城市的数目和道路的数目。第二行
n 个正整数,每两个整数之间用一个空格隔开,按标号顺序分别表示这 n 个城市的商品价格。接下来
m 行,每行有 3 个正整数, x ,y , z ,每两个整数之间用一个空格隔开。如果z =1,表示这条道路是城市 x 到城市y 之间的单向道路;如果 z =2,表示这条道路为城市x 和城市 y 之间的双向道路。输出格式:
输出文件 trade.out 共 1 行,包含 1 个整数,表示最多能赚取的旅费。如果没有进行贸易,则输出 0。
输入输出样例
输入样例#1:
5 5
4 3 5 6 1
1 2 1
1 4 1
2 3 2
3 5 1
4 5 2
输出样例#1:
5
说明
【数据范围】
输入数据保证 1 号城市可以到达n 号城市。
对于 10%的数据, 1≤n≤6 。
对于 30%的数据, 1≤n≤100 。
对于 50%的数据,不存在一条旅游路线,可以从一个城市出发,再回到这个城市。
对于 100%的数据, 1≤n≤100000 , 1≤m≤500000 , 1≤x,y≤n , 1≤z≤2 ,1≤各城市水晶球价格≤100。NOIP 2009 提高组 第三题
概括一下题意,有
n
个结点和
可以看到,数据范围是比较大的,这就要求我们必须要在线性时间内完成任务。
原问题的描述还是有点复杂的,但是通过把题意提炼出来之后,就比较好下手了。因此这也是一种必要的策略,在必要的时候抓住重点。
我们还要通过一些方法把问题简化一下,显然原图中是可能存在环的(对于后 50% 的测试数据)。既然可以自由地遍历,为什么不把原图缩点呢?这样一来,同一强连通分量中的值必然是可以任意取的,于是可以在缩点时顺便求得新图中各个结点权值的最小值和最大值。
这样一来,我们就得到了一个 DAG,显然可以在这上面进行动态规划。不妨以
因为买入肯定是先于卖出进行的,因此对于结点
i
,就可以确定在它之后卖出的最优价格,但是,在什么时候买入好呢?是不是要还枚举一下
不必,直接考虑对于每个结点
i
,在结点
如果在
i
的父亲买入会更优,那么递归返回的时候,交给
但是还要注意一些细节:
- 要用记忆化搜索求解,否则会造成大量重复计算
- 有些结点可能是根本无法到达结点 n <script type="math/tex" id="MathJax-Element-1885">n</script> 的,不符合题意要求,要记得排除
参考代码:
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <stack>
using namespace std;
const int maxn = 1e5 + 100;
const int maxm = 5e5 + 100;
struct Edge { int to, next; } edge[maxm << 1];
int cntEdge;
int head[maxn];
void addEdge(int u, int v) {
edge[++cntEdge].to = v;
edge[cntEdge].next = head[u];
head[u] = cntEdge;
}
struct Scc { int low, high; } scc[maxn]; //记录每个强连通分量内的最小值和最大值
int cntScc;
int f[maxn]; //f[i] 含义与题解所述一致
int n, m; int ans;
int price[maxn], belong[maxn];
int x[maxm], y[maxm], z[maxm];
int timeStamp;
int dfn[maxn], low[maxn];
bool inStack[maxn];
stack <int> st;
void tarjan(int root) {
dfn[root] = low[root] = ++timeStamp;
inStack[root] = true;
st.push(root);
for (int i = head[root]; i; i = edge[i].next) {
int To = edge[i].to;
if (!dfn[edge[i].to]) {
tarjan(To);
low[root] = min(low[root], low[To]);
} else if (inStack[To]) low[root] = min(low[root], dfn[To]);
}
if (dfn[root] == low[root]) {
scc[++cntScc].low = 2147483647;
int cur;
do {
cur = st.top(); st.pop();
inStack[cur] = false;
belong[cur] = cntScc;
scc[cntScc].low = min(scc[cntScc].low, price[cur]);
scc[cntScc].high = max(scc[cntScc].high, price[cur]);
}
while (cur != root);
}
}
bool visited[maxn];
void dfs(int root) {
visited[root] = true;
if (root == belong[n]) f[root] = max(f[root], scc[root].high);
for (int i = head[root]; i; i = edge[i].next) {
if (!visited[edge[i].to]) dfs(edge[i].to);
f[root] = max(f[root], f[edge[i].to]);
}
if (f[root]) f[root] = max(f[root], scc[root].high); //如果该点无法到达点 n,就不必考虑它
ans = max(ans, f[root] - scc[root].low); //在当前点买入,后面卖出
}
int main(void) {
freopen("1412.in", "r", stdin);
freopen("1412.out", "w", stdout);
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++) scanf("%d", &price[i]);
for (int i = 0; i < m; i++) {
scanf("%d%d%d", &x[i], &y[i], &z[i]);
addEdge(x[i], y[i]);
if (z[i] == 2) addEdge(y[i], x[i]); //无向边
}
for (int i = 1; i <= n; i++) if (!dfn[i]) tarjan(i); //缩点
memset(head, 0, sizeof head);
cntEdge = 0;
for (int i = 0; i < m; i++)
if (belong[x[i]] != belong[y[i]]) {
addEdge(belong[x[i]], belong[y[i]]);
if (z[i] == 2) addEdge(belong[y[i]], belong[x[i]]);
}
dfs(belong[1]);
printf("%d\n", ans);
return 0;
}