做法一:
枚举
i
、
图1 在结点
i
和
加边后,可以枚举
k
,算出从 1 到
怎么求 1 到
k
的最短路呢?不妨设为
如图,我们知道,加边后,A 部分的点不受影响,仍然要用最原始的方法,从 1 走到 2,2 走到 3……从 k−1 走到 k ,即
可以发现,这部分的计算事实上可以利用前缀和进行优化。用 fi 表示:在原来没加边的情况下,从 1 走到 i 的最短路。公式和上面是一样的,只是少了限制。
考虑 B 部分,可以发现有两种走法:最原始的方法是从 1 走到
考虑 C 部分,最优方法当然是从 1 走到
i
,从
图2 利用虫洞省距离的示意图
即
这样,先 O(N) 预处理前缀和,再通过 O(N2) 枚举和 O(N) 计算,就可以求出答案了。
时间复杂度:
O(N3)
期望得分:30%
参考代码:
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
using namespace std;
const int MAXN = 1e5 + 100;
int N;
long long len[MAXN], f[MAXN];
int main(void) {
freopen("2073.in", "r", stdin);
freopen("2073.out", "w", stdout);
scanf("%d", &N); f[0] = 0LL;
for (int i = 1; i < N; i++) {
scanf("%lld", &len[i]);
f[i] = f[i - 1] + len[i];
}
long long ans = 214748364700000LL;
for (int i = 1; i < N; i++)
for (int j = i + 1; j <= N; j++) {
long long m = 0;
for (int k = 2; k <= N; k++) {
long long c;
if (k <= i) c = f[k - 1]; //A 部分
else if (k < j) c = min(f[k - 1], f[i - 1] + (f[j - 1] - f[k - 1])); //B 部分
else c = f[i - 1] + (f[k - 1] - f[j - 1]); //C 部分
m = max(m, c);
}
ans = min(ans, m);
}
printf("%lld\n", ans);
return 0;
}
做法二:
有如下定理:虫洞的左入口一定放在母巢。
推理证明:参考上面的图,易知借助虫洞只对
i<k
的点
k
有意义。对于 B 部分
因此可以省掉枚举左入口的一维,直接考虑右端点 i 。
时间复杂度:
期望得分:80%
代码和上面其实差不多,就不贴了。
做法三:
直觉告诉我们,读入都要 O(N) ,意味着不可能比它更低,但是之前内层的一维则应该可以优化,最起码要总的 O(Nlog2N) 才能过。
与 log 有关的,很容易就会想到二分。但从哪里入手呢?怎么会有单调性?
先说一个很显然的,对于 A 部分,使最短路最大的
k
肯定是
回归一下前面的式子,确定虫洞左入口为母巢之后,有
不妨设 y1=fj , y2=fi−fj ,可以发现函数图象大致是这样的:
图3 函数图像示意图
由于取 min,所以只有红色部分对我们是有用的,可以发现 min(y1,y2) 大致呈一个凸性函数。因为要求最短路的最大值,所以只要求出那个极值就可以了。
我们知道,函数交点应该满足 y1=y2 。但由于本题中都是整点,一般只能尽量接近。将 fj=fi−fj 移项可以得到 2×fj=fi ,由于 fj 是单调递增的,根据这个条件二分即可。
求得这个点之后,由于并不是完全相等而是会有偏差,因此有必要分类讨论一下原始方法和和折返两种情况,取当中的更大值。
这里在二分时要非常小心,我改了几次都错了。区间的设置要么是左闭右开,要么是左开右闭,大于、小于和等于的情况要考虑清楚。设初值、转移和返回答案的时候,区间端点的性质都应该是统一的。
时间复杂度:
O(Nlog2N)
期望得分:100%
参考代码:
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
using namespace std;
const int MAXN = 1e5 + 100;
int N;
long long len[MAXN], f[MAXN];
long long solve(int k) { //二分找出:对于右入口放在k时,两种方法的分界点
int l = 2, r = k; //[l, r) 左闭右开
while (l + 1 < r) {
int mid = l + r >> 1;
if ((f[k] - f[mid]) <= f[mid]) r = mid; else l = mid;
}
return l + 1 == k ? f[l] : max(f[l], f[k] - f[r]); //注意不用走回头路的边界情况
}
int main(void) {
freopen("2073.in", "r", stdin);
freopen("2073.out", "w", stdout);
scanf("%d", &N);
for (int i = 1; i < N; i++) scanf("%lld", &len[i]);
f[1] = 0LL; //前缀和
for (int i = 2; i <= N; i++) f[i] = f[i - 1] + len[i - 1];
long long ans = f[N];
for (int i = 2; i <= N; i++) ans = min(ans, max(f[N] - f[i], solve(i))); //还要考虑 C 部分的情况
printf("%lld\n", ans);
return 0;
}
做到这里已经非常不错了,但是,还可以进一步优化!
做法四:
如果手动模拟(或者思维比较好)可以发现,循环时随着右入口的向右,求得的极点也会是向右的。于是就没有必要再二分了,而是可以在原先点的基础上向右移,直到得到一个合适的点即可。这就是典型的 two-pointer 做法。
时间复杂度:
O(N)
期望得分:100%
这题实际上不是特别难,但是考得比较灵活。要求我们要能够对常用的算法熟练掌握,在手动模拟分析的过程中发现一些规律,来帮助我们推导、解题。