Roof-line Model性能分析模型简介

Roofline模型解析:提升深度学习性能的计算强度策略
本文探讨了Roofline模型在深度学习中的应用,如何通过优化计算强度来最大化性能。讲解了理论计算性能与实际性能的关系,以CUDAGEMM为例,介绍了矩阵乘法优化过程中的Roofline分析,并提到了算子融合和内存访问效率的重要性。

REF

Roofline Model与深度学习模型的性能分析 - 知乎

Roofline: An Insightful Visual Performance Model for Floating-Point Programs and Multicore Architectures https://people.eecs.berkeley.edu/~kubitron/cs252/handouts/papers/RooflineVyNoYellow.pdf 

 

Roof-line Model模型简介

Roof-line Model讲的是我们理论能够获得的最大计算性能FLOPS。图像横坐标为计算强度,为实际的计算量除以访存量,而纵坐标为我们能够获得的最大理论计算性能。

当实际的计算强度(计算量/访存量)大于Imax时,我们理论上获得硬件最大的计算性能pi,这时程序计算时间为实际的计算量除以pi。

而实际计算强度小于Imax时,我们理论能获得的最大计算性能达不到pi,只能达到实际的计算量/访存量*beta。这个模型说明如果访存利用率低,我们难以达到硬件拥有的最大性能。

因此我们需要提升计算的计算强度,从而最大化实际能够获得的计算性能。例如算子融合,则是在相同计算量的时候避免了中间的访存过程,从而降低了访存量,提高了计算强度。而矩阵乘法,通过合理的分块等方式,也能够减低访存量增大计算强度。

要注意一个计算理论的访存量和实际实现的访存量。例如矩阵乘法,理论的访存量和实际的访存量可能完全不一样。而elemwise计算两者通常可能是一致的。此外,理论算力是明确的,但是对于带宽部分,由于存储系统存在层级,实际能够获得的带宽跟计算过程也有关,数据时间和空间局部性利用好的算法能够获得的理论带宽也就越高。

矩阵乘优化过程中的roof-line分析实践:

[施工中] CUDA GEMM 理论性能分析与 kernel 优化 - 知乎

Roof-line模型是一种性能分析工具,它帮助工程师理解AI芯片的性能瓶颈,并指导如何进行有效的性能优化。这个模型主要关注的是计算能力和内存带宽之间的关系,通过绘制一条代表硬件性能上限的“屋顶”线,工程师可以直观地看到目前系统的性能在屋顶线以下的具体位置,从而确定性能优化的潜力和方向。 参考资源链接:[AI芯片软件栈技术挑战与解决方案探索](https://wenku.csdn.net/doc/1mh66rirox?spm=1055.2569.3001.10343) 具体应用Roof-line模型时,首先需要测量AI应用在AI芯片上的实际性能,包括计算量和数据移动量。然后,将这些数据点绘制在Roof-line图表上,以确定当前性能与理论性能上限的差距。如果数据点靠近屋顶线,说明已经很好地利用了硬件资源;如果远离屋顶线,表明还有很大的优化空间。 以华为的AI芯片为例,通过Roof-line模型,华为的工程师能够识别哪些算子的性能受限于计算带宽,哪些受限于内存带宽。根据这些信息,他们可以采取针对性的优化措施,比如使用向量化技术增加计算效率,或者优化数据布局减少内存访问延迟。此外,还可以通过图调度优化并行执行的算子,提高硬件利用率。 在AI芯片软件栈中实现Roof-line模型时,需要与编译器、运行时库和硬件接口等软件层紧密配合,以确保各种优化技术能够在正确的层面上得到应用。编译器层负责图的优化、算子调度和自动并行化,运行时库负责实际的资源管理和执行,硬件接口确保软件栈能正确地控制硬件资源。 对于希望深入理解Roof-line模型及其在AI芯片性能优化中的应用的读者来说,我强烈推荐阅读《AI芯片软件栈技术挑战与解决方案探索》。这本书详细介绍了AI芯片软件栈的构成,以及如何使用Roof-line模型评估和优化AI芯片的性能。通过学习这本书,读者可以更全面地掌握AI芯片软件栈的技术挑战和解决方案,为自己的项目提供理论和实践的支持。 参考资源链接:[AI芯片软件栈技术挑战与解决方案探索](https://wenku.csdn.net/doc/1mh66rirox?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Luchang-Li

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值