Nondegenerate case
H^|ψn⟩=En|ψn⟩
Our purpose is to verify the value of En and |ψn⟩
We expand them in a set of basis,
H^0|ψ(0)m⟩=E(0)m|ψ(0)m⟩
Thus
⎧⎩⎨⎪⎪⎪⎪En=λ0E(0)n+λ1E(1)n+λ2E(2)n+⋯|ψn⟩=∑mCm|ψ(0)m⟩Cm=λ0C(0)m+λ1C(1)m+λ2C(2)m+⋯
Let H^=H^0+λW^, and premultify the original equation with a random component of the basis.
⟨ψ(0)k|H^|ψn⟩=⟨ψ(0)k|En|ψn⟩
l.h.s========⟨ψ(0)k|H|ψn⟩⟨ψ(0)k|H0+λW|ψn⟩⟨ψ(0)k|(H0+λW)(∑m|ψ(0)m⟩⟨ψ(0)m|)|ψn⟩⟨ψ(0)k|H0(∑m|ψ(0)m⟩⟨ψ(0)m|)|ψn⟩+λ⟨ψ(0)k|W(∑m|ψ(0)m⟩⟨ψ(0)m|)|ψn⟩∑mE(0)nδmkCm+λ∑mWkmCmE(0)nCk+λ∑mWkmCmE(0)n(λ0C(0)k+λ1C(1)k+λ2C(2)k+⋯)+λ∑mWkm(λ0C(0)m+λ1C(1)m+λ2C(2)m+⋯)λ0(E(0)nC(0)k)+λ1(E(0)nC(1)k+∑mWkmC(0)m)+λ2(E(0)nC(2)k+∑mWkmC(1)m)+⋯
r.h.s====⟨ψ(0)k|En|ψn⟩EnCk(λ0E(0)n+λ1E(1)n+λ2E(2)n+⋯)(λ0C(0)k+λ1C(1)k+λ2C(2)k+⋯)λ0(E(0)nC(0)k)+λ1(E(0)nC(1)k+E(1)nC(0)k)+λ2(E(0)nC(2)k+E(1)nC(1)k+E(2)nC(0)k)+⋯
Compare coefficientλ0E(0)kC(0)k=E(0)nC(0)k⇒C(0)k=δnk
λ1E(0)kC(1)k+∑mWkmC(0)m=E(0)nC(1)k+E(1)nC(0)kLet k=n
⇒E(1)n=∑mWnmC(0)m=∑mWnmδmn=WnnSubstitute in last equation⇒C(1)k=WnkE(0)n−E(0)k(n≠k)
λ2E(0)kC(2)k+∑mWkmC(1)m=E(0)nC(2)k+E(1)nC(1)k+E(2)nC(0)kLet k=n
⇒E(2)n=∑m≠n|Wnm|2E(0)n−E(0)k
最终解(能量近似到二阶,波函数近似到一阶)
⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪En|ψn⟩=E(0)n+λE(1)n+λ2E(2)n=E(0)n+H′nn+∑m≠n|H′nm|E(0)n−E(0)m=∑k(C(0)k+λC(1)k)|ψ(0)k⟩=|ψ(0)k⟩+∑k≠nH′knE(0)n−E(0)k
Degenerate Case
H^|ψn⟩=En|ψn⟩
Our purpose is to verify the value of En and |ψn⟩
We expand them in a set of basis,
H^0|kν⟩=E(0)k|kν⟩,ν=1,2,⋯,fk
Thus
⎧⎩⎨⎪⎪En=λ0E(0)n+λ1E(1)n+λ2E(2)n+⋯|ψn⟩=∑kνCkν|kν⟩Ckν=λ0C(0)kν+λ1C(1)kν+λ2C(2)kν+⋯
Let H^=H^0+λW^, and premultify the original equation with a random component of the basis.
⟨mμ|H^|ψn⟩=⟨mμ|En|ψn⟩
l.h.s========⟨mμ|H|ψn⟩⟨mμ|H0+λW|ψn⟩⟨mμ|(H0+λW)⎛⎝∑k,v|kν⟩⟨kν|⎞⎠|ψn⟩⟨mμ|H0⎛⎝∑k,v|kν⟩⟨kν|⎞⎠|ψn⟩+λ⟨mμ|W⎛⎝∑k,ν|kν⟩⟨kν|⎞⎠|ψn⟩∑k,νE(0)mδmkδμνCkν+λ∑k,νWmμ,kνCkνE(0)mCmμ+λ∑k,νWmμ,kνCkνE(0)m(λ0C(0)mμ+λ1C(1)mμ+λ2C(2)mμ+⋯)+λ∑k,νWmμ,kν(λ0C(0)kν+λ1C(1)kν+λ2C(2)kν+⋯)λ0(E(0)mC(0)mμ)+λ1(E(0)mC(1)mμ+∑k,νWmμ,kνC(0)kν)+λ2(E(0)mC(2)mμ+∑k,νWmμ,kνC(1)kν)+⋯
r.h.s====⟨mμ|En|ψn⟩EnCmμ(λ0E(0)n+λ1E(1)n+λ2E(2)n+⋯)(λ0C(0)k+λ1C(1)mμ+λ2C(2)mμ+⋯)λ0(E(0)nC(0)mμ)+λ1(E(0)nC(1)mμ+E(1)nC(0)mμ)+λ2(E(0)nC(2)mμ+E(1)nC(1)mμ+E(2)nC(0)mμ)+⋯
Compare coefficientλ0E(0)mC(0)mμ=E(0)nC(0)mμ⇒C(0)mμ=aμδnm
λ1E(0)mC(1)mμ+∑mWmμ,kνC(0)kν=E(0)nC(1)mμ+E(1)nC(0)mμLet m=n
⇒E(1)n⋅aμ=∑nWnμ,kνC(0)n=∑nWnμ,kν⋅aνδkn=∑nWnμ,nνaνDifineWμν=Wnμ,nνThen∑ν(Wμν−E(1)nδμν)=0⇒det|Wμν−E(1)nδμν|=0The above equation about E(1)n has fn 个根E(1)n=E(1)nα,α=1,2,⋯,fnaν=aαν⇒{|ψnα=∑fnν=1aαν|kν⟩En=E(0)n+λE(1)nα,α=1,2,⋯,fn
这样原来简并的能级可能出现部分消除或者全部消除。
Stark Effect
原子在电场中光谱发生变化的现象
Thanks to Prof. Guo Hong