量子力学第九弹——微扰论

Nondegenerate case

H^|ψn=En|ψn

Our purpose is to verify the value of En and |ψn
We expand them in a set of basis,
H^0|ψ(0)m=E(0)m|ψ(0)m

Thus
En=λ0E(0)n+λ1E(1)n+λ2E(2)n+|ψn=mCm|ψ(0)mCm=λ0C(0)m+λ1C(1)m+λ2C(2)m+

Let H^=H^0+λW^, and premultify the original equation with a random component of the basis.

ψ(0)k|H^|ψn=ψ(0)k|En|ψn

l.h.s========ψ(0)k|H|ψnψ(0)k|H0+λW|ψnψ(0)k|(H0+λW)(m|ψ(0)mψ(0)m|)|ψnψ(0)k|H0(m|ψ(0)mψ(0)m|)|ψn+λψ(0)k|W(m|ψ(0)mψ(0)m|)|ψnmE(0)nδmkCm+λmWkmCmE(0)nCk+λmWkmCmE(0)n(λ0C(0)k+λ1C(1)k+λ2C(2)k+)+λmWkm(λ0C(0)m+λ1C(1)m+λ2C(2)m+)λ0(E(0)nC(0)k)+λ1(E(0)nC(1)k+mWkmC(0)m)+λ2(E(0)nC(2)k+mWkmC(1)m)+

r.h.s====ψ(0)k|En|ψnEnCk(λ0E(0)n+λ1E(1)n+λ2E(2)n+)(λ0C(0)k+λ1C(1)k+λ2C(2)k+)λ0(E(0)nC(0)k)+λ1(E(0)nC(1)k+E(1)nC(0)k)+λ2(E(0)nC(2)k+E(1)nC(1)k+E(2)nC(0)k)+

Compare coefficient

λ0E(0)kC(0)k=E(0)nC(0)kC(0)k=δnk
λ1E(0)kC(1)k+mWkmC(0)m=E(0)nC(1)k+E(1)nC(0)k

Let k=n

E(1)n=mWnmC(0)m=mWnmδmn=Wnn
Substitute in last equation
C(1)k=WnkE(0)nE(0)k(nk)

λ2E(0)kC(2)k+mWkmC(1)m=E(0)nC(2)k+E(1)nC(1)k+E(2)nC(0)k

Let k=n

E(2)n=mn|Wnm|2E(0)nE(0)k

最终解(能量近似到二阶,波函数近似到一阶)

En|ψn=E(0)n+λE(1)n+λ2E(2)n=E(0)n+Hnn+mn|Hnm|E(0)nE(0)m=k(C(0)k+λC(1)k)|ψ(0)k=|ψ(0)k+knHknE(0)nE(0)k

Degenerate Case

H^|ψn=En|ψn

Our purpose is to verify the value of En and |ψn
We expand them in a set of basis,
H^0|kν=E(0)k|kν,ν=1,2,,fk

Thus
En=λ0E(0)n+λ1E(1)n+λ2E(2)n+|ψn=kνCkν|kνCkν=λ0C(0)kν+λ1C(1)kν+λ2C(2)kν+

Let H^=H^0+λW^, and premultify the original equation with a random component of the basis.

mμ|H^|ψn=mμ|En|ψn

l.h.s========mμ|H|ψnmμ|H0+λW|ψnmμ|(H0+λW)k,v|kνkν||ψnmμ|H0k,v|kνkν||ψn+λmμ|Wk,ν|kνkν||ψnk,νE(0)mδmkδμνCkν+λk,νWmμ,kνCkνE(0)mCmμ+λk,νWmμ,kνCkνE(0)m(λ0C(0)mμ+λ1C(1)mμ+λ2C(2)mμ+)+λk,νWmμ,kν(λ0C(0)kν+λ1C(1)kν+λ2C(2)kν+)λ0(E(0)mC(0)mμ)+λ1(E(0)mC(1)mμ+k,νWmμ,kνC(0)kν)+λ2(E(0)mC(2)mμ+k,νWmμ,kνC(1)kν)+

r.h.s====mμ|En|ψnEnCmμ(λ0E(0)n+λ1E(1)n+λ2E(2)n+)(λ0C(0)k+λ1C(1)mμ+λ2C(2)mμ+)λ0(E(0)nC(0)mμ)+λ1(E(0)nC(1)mμ+E(1)nC(0)mμ)+λ2(E(0)nC(2)mμ+E(1)nC(1)mμ+E(2)nC(0)mμ)+

Compare coefficient

λ0E(0)mC(0)mμ=E(0)nC(0)mμC(0)mμ=aμδnm
λ1E(0)mC(1)mμ+mWmμ,kνC(0)kν=E(0)nC(1)mμ+E(1)nC(0)mμ

Let m=n

E(1)naμ=nWnμ,kνC(0)n=nWnμ,kνaνδkn=nWnμ,nνaν
Difine
Wμν=Wnμ,nν
Then
ν(WμνE(1)nδμν)=0
det|WμνE(1)nδμν|=0
The above equation about E(1)n has fn 个根
E(1)n=E(1)nα,α=1,2,,fnaν=aαν
{|ψnα=fnν=1aαν|kνEn=E(0)n+λE(1)nα,α=1,2,,fn

这样原来简并的能级可能出现部分消除或者全部消除。

Stark Effect

原子在电场中光谱发生变化的现象


Thanks to Prof. Guo Hong

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值