用Cauchy积分研究解析函数

定理】(Cauchy不等式) 设 f(z) 在区域 Ω 上解析,且在 Ω |f(z)|M, z0Ω,0<rdist(z0,Ω)=infwΩ{|z0w|} ,恒有

|f(n)(z0)|n!Mrn

定理】 设 f(z) 在区域 Ω 内解析,且在 Ω |f(z)|M ,则对 Ω 中任意紧集 K 以及nN,存在仅与 K n有关的常数 C ,使得zK,恒有

|f(n)(z0)|CM

推论】如果解析函数列 {fn(z)} 在区域 Ω 上内闭一致收敛,则对任意的 kN {f(k)n(z)} 也在区域 Ω 上内闭一致收敛。

定理】(Liouville定理)如果 f(z) 在整个平面 C 上解析且有界,则 f(z) 是常数。

定理】复平面 C 和单位圆盘 D(0,1) 不能解析同胚。

定义整函数 复平面上的解析函数;超越整函数 不是多项式的整函数。

定义】稠密 C 中的集合 S 在集合T中稠密,如果 S¯¯T .

定理】(Weierstrass定理)如果 f(z) 是不为常数的整函数,则 f(z) 的值域 f(C) C 中稠密。

定理】(Picard小定理)如果 f(z) 是超越整函数,则集合 Cf(C) 至多包含一个点。

定理】(平均值定理)如果 f(z) 在区域 Ω 内解析,则 z0Ω,0<r<dist(z0,Ω) ,恒有

f(z0)=12π2π0f(z0+reiθ)dθ

推论】(平均值不等式)

|f(z0)|12π2π0|f(z0+reiθ)|dθ


本篇主要参考《复变函数简明教程》

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值