基于微信餐厅外卖点餐订餐小程序系统毕业设计 开题报告模版

 博主介绍:黄菊华老师《Vue.js入门与商城开发实战》《微信小程序商城开发》图书作者,CSDN博客专家,在线教育专家,CSDN钻石讲师;专注大学生毕业设计教育和辅导。
所有项目都配有从入门到精通的基础知识视频课程,学习后应对毕业设计答辩。
项目配有对应开发文档、开题报告、任务书、PPT、论文模版等

项目都录了发布和功能操作演示视频;项目的界面和功能都可以定制,包安装运行!!!

如果需要联系我,可以在CSDN网站查询黄菊华老师
在文章末尾可以获取联系方式

微信订餐在线外卖

小程序系统

开题报告

X X X X 大学/学校/学院

毕业论文(设计)开题报告书

学生姓名

所属

学院

学号

专业班级

论文(设计)题目

微信订餐在线外卖小程序系统设计与实现

指导教师姓名(职称)

开题日期

选题依据:1.研究背景与意义;2.国内外研究(应用与发展)现状。

1:研究背景与意义

微信订餐在线外卖小程序系统的研究背景与意义如下:

研究背景:

外卖市场的崛起:近年来,随着人们生活节奏的加快和消费习惯的变化,外卖行业迅速崛起,成为餐饮市场的重要组成部分。

移动互联网的普及:移动互联网的普及使得人们可以通过手机随时随地访问各种服务,包括订餐服务。

微信平台的生态优势:微信作为国内最大的社交平台,拥有庞大的用户基础和完善的支付、位置定位等功能,为在线外卖服务提供了良好的生态环境。

意义:

提供便捷的订餐体验:微信订餐在线外卖小程序系统可以让用户通过微信平台浏览餐厅菜单、下单、支付,实现一站式订餐体验,大大提高了用户的订餐效率。

促进外卖行业的发展:通过微信订餐在线外卖小程序系统,餐饮企业可以扩大市场覆盖范围,吸引更多潜在客户,推动外卖业务的增长。

提升餐饮企业的运营效率:通过小程序系统,餐饮企业可以实现订单管理的自动化和智能化,减少人工操作,提高运营效率,降低成本。

增加用户粘性:微信订餐在线外卖小程序系统可以结合微信的社交功能,通过优惠券、会员制度等手段,增加用户粘性,促进用户复购。

优化资源配置:通过分析用户的订餐数据和喜好,餐饮企业可以更加精准地进行菜品研发和库存管理,实现资源的优化配置。

综上所述,微信订餐在线外卖小程序系统在外卖市场崛起、移动互联网普及以及微信平台生态优势的背景下,对于提供便捷订餐体验、促进外卖行业发展、提升餐饮企业运营效率、增加用户粘性以及优化资源配置等方面都具有重要的意义。

2:国内外研究现状

微信订餐在线外卖小程序系统的国内外研究现状如下:

国内研究现状:

国内对于微信订餐在线外卖小程序系统的研究已经相当成熟。由于微信在国内的普及率非常高,且其平台提供了丰富的功能和工具,很多餐饮企业和开发者都积极投入到了这一领域的研究和开发中。目前,市场上已经存在大量的微信订餐在线外卖小程序,它们提供了丰富的菜品选择、便捷的下单和支付方式,以及个性化的用户体验。同时,国内的研究也关注于提升系统的智能化水平,如通过数据分析和挖掘为用户提供个性化的餐饮推荐。

国外研究现状:

与国内相比,国外对于微信订餐在线外卖小程序系统的研究相对较少,但并不意味着这一市场没有得到开发。实际上,随着中国的外卖市场逐渐扩大,一些国际餐饮品牌和外卖平台也开始尝试在微信上推出在线外卖服务,以吸引中国用户。同时,国外的研究更侧重于跨平台的集成和不同餐饮服务的整合,以实现更为便捷和多样化的用餐体验。此外,对于用户隐私保护和数据安全性的研究也是国外研究者关注的焦点。

需要注意的是,尽管国内外的研究焦点存在一定差异,但共同的目标都是为用户提供更好的用餐体验,推动餐饮行业的数字化转型。随着技术的不断进步和全球化的趋势加强,国内外的研究者和开发者可以进一步加深合作,共同推动微信订餐在线外卖小程序系统的创新和发展。

3:研究思路与方法

3.1研究思路

通过图书馆借阅开发相关书籍或者网络上寻找相关课题视频,查询网络以及向导师寻求帮助等方法解决技术上的问题。

具体步骤为:

(1)对系统进行需求分析,明确管理员功能,前端开发功能,开发框架模式等;

(2)对系统进行概要设计,搭建开发换进,建立系统的架构图、功能模块图等;

(3)对系统管理后台,设计出所有功能模块;

(4)对用户前端,设计出所有功能模块;

(5)进行软件编码,实现系统各项功能;

(6)对系统进行各种测试;

(7)提交系统,撰写论文。

选定了项目开发模式、后台的开发框架,搭建好开发环境和安装好对应的开发工具;接下来就设计数据库,开发后台和接口,开发完整的项目后台和前端,完成最终的作品、测试、使用。

3.2研究方法

为了更好完善系统使用了以下研究方法:

(1)文献阅读法

通过各个文献查找网站、学校图书馆以及百度百科查询和借鉴课题相关的论文资料,然后将适合的资料保存到本地,开发的时候使用。

(2)比较法:通过对国内外有关课题系统的功能、相关技术、内容等方面进行比较分析,从而提出系统所存在的问题,并提出相应的解决措施

(3)模拟法

模拟法是先依照原型的主要特征,创设一个相似的模型,然后通过模型来间接研究原型的一种形容方法。我们通过将本地电脑模拟为服务器进行本地操作,达到开发的最终效果。

3.3可行性

基于微信小程序外卖点餐系统有以下三方面可以总结系统开发的可行性,具体如下:

1.技术可行性

以Windows7或10为操作系统,采用IDEA软件为开发工具,运用mysql进行数据库存储;管理人员后台管理系统硬件环境是PC机,用户在手机上使用小程序访问和使用商城。

2.经济可行性

一方面,采用IDEA和工具开发,对开发人员来讲,有好的人机界面和强劲的功能支持,对销售人员的工作效率进一步提高从而节省人力、物力;另一方面,系统的制作成本低,在现有的PC机上即可使用IDEA开发者工具进行开发。

3.操作可行性

IDEA软件在操作上是在Windows操作系统上进行商城后台管理系统的使用,主要凭借使用Windows操作技术即可完成数据的录入、修改、删除等功能,简单方便。

用户使用手机微信即可登录小程序商城系统来完成购买的使用。

4:系统初步设计方案

4.1主要设计技术

小程序开发:微信开发者工具(MINA框架)

后台环境:JDK1.8 + Tomcat8

后台开发语言:Java

后台开发框架:springboot

后台模板引擎:Thymeleaf

后台开发工具:Idea

数据库:mysql8

数据库管理工具:navicat

其他开发语言:html + css +javascript

4.2研究内容

课题主要目标是设计并能够实现一个基于微信小程序外卖点餐系统,前台用户使用小程序,后台管理使用基于JAVA的Springboot框架;系统整体架构为CS;通过后台添加菜品,用户通过小程序登录,查看菜品、购买、下单等。

用户首次登陆系统需要注册一个用户或直接使用微信作为账号,用户在登录平台后,可以进行平台的操作。主要模块包括以下几点:

  1. 登录功能:注册普通账号登录;也可以直接使用微信登录;登录后可以修改用户的基本信息,也可以退出。
  2. 资讯功能:后台录入资讯,在微信小程序外卖点菜系统的资讯模板展示,用户可以任意浏览资讯列表和详细信息  
  3. 菜品库:后台录入菜品的相关信息,可以在小程序菜品列表里面一个一个点击进去查看菜品详细信息;支持通过查询来查找所需要的菜品。
  4. 菜品信息: 点击到菜品详情页面,可以查看菜品的介绍,查看菜品简介、图片、详情、已用餐用户的菜品评论。
  5. 收藏操作:在菜品信息详情,下方点击“收藏”,进行收藏
  6. 菜品选择:在点菜栏目,直接点击每个菜品的“+”来增加菜品;也可以在菜品的详情页面,点击“加入购物车”在增加菜品。
  7. 点餐列表:点餐栏目已经有数量的菜品,或者“购物车”栏目的
  8. 下单:点击“去结算”,选择或者填写收货地址、确认要下单的外卖菜品和数量;如有口味等事项,在备注里面填写。点击“下单结算”,然后跳转到订单列表
  9. 取消订单:在“我的订单”列表中,点击“取消申请”,删除订单
  10. 去付款::在“我的订单”列表中,点击“去付款”,模拟付款
  11. 我的收藏:用户收藏的菜品列表。

收货地址管理:录入收货地址、修改收货地址、删除

   整个系统设计到的系统架构图、系统功能图图如下

系统架构

系统功能图

5:进度安排

2024.09.10—2024.10.15  查看大量的文献,收集课题有关资料,确定论文选题;

2024.10.16—2024.10.30  在老师的指导下,填写毕业论文任务书;

2024.10.31—2024.11.15  大量收集论文资料,理清论文思路,对论文思路进行完善。

2024.11.16—2024.12.22  完成开题报告答辩;

2024.12.23—2024.12.27  根据指导老师提出的建议再进行修改,完善系统功能设计

2024.12.28—2025.04.10  在查阅大量文献之后,运用多种研究方案,完成系统开发并基本完成论文初稿。

2025.04.01—2025.04.15  将初稿完善交由导师审阅,提出修改建议。

2025.04.16—2025.05.14  在导师指导下,对论文进行反复修改形成终稿,装订成册上交学院,同时为毕业论文答辩做准备工作

2025.05.15  进行毕业论文答辩

6:论文(设计)写作提纲

摘要      

第1章 绪论 

       1.1 项目研究背景和意义

       1.2 论文研究目的

       1.3 系统主要功能

第2章 系统相关技术 

       2.1 开发概要

       2.2 微信小程序的MINA 框架

       2.3 后台开发技术

              2.3.1 JDK介绍

              2.3.2 Tomcat服务器    

              2.3.3 Java 编程语言    

              2.3.4 Spring Boot框架 

              2.3.5 ThymeLeaf模板引擎  

       2.4 MYSQL 数据库

       2.5 其他网页技术

              2.5.1 什么是HTML

              2.5.2 什么是 CSS

              2.5.3 JavaScript    

       2.6 本章小结

第3章 系统分析 

       3.1 系统概要

       3.2 数据库和图形

              3.2.1 数据ER原型图  

              3.1.2 实体图 

              3.1.3 数据库表    

       3.3 前端小程序需求分析

       3.4 后台需求分析

       3.5 本章小结

第4章 系统设计与实现     

       4.1 前端小程序实现   

       4.2 后台实现

       4.3 本章小结

第5章 总结与展望     

       5.1 总结

       5.2 展望

参考文献      

致谢      

7:参考文献

[1]黎宇轩. 基于微信公众号的购物网站的设计与实现[D].南昌大学,2018.

[2]王媛.基于微信小程序的线上交易平台[J].中国科技信息,2019.

[3]微信小程序接入指南,[Online] https://www.w3cschool.cn/weixinapp/9wou1q8j.html.(2017.12.29).

[4]王冲,卜晓燕.小程序,大舞台——微信小程序在电商中的应用[J/OL].品牌研究,2018.

[5]程子珍. 基于微信小程序的网上购物系统的设计与实现[D].首都经济贸易大学,2018.

[6] Bill Phillips. Android Programming: The Big Nerd Ranch Guide (2nd Edition)[M].2015

[7]王婷婷.微信小程序开发[J].信息技术与信息化,2018.

[8]江国文.大数据环境下基于MySQL的数据库架构设计与实现[J].电子世界,2018.

[9]周问宇. 网上购物系统的设计与实现[D].山东大学,2007.

[10]张延玲. 基于Android的社区购物系统的设计与实现[D].北京交通大学,2016.

[11] Josh Juneau. The MVC Framework[M].Apress:2018-06-19.

[12] Xuequn Wang,Xiaolin Lin,Marilyn K. Spencer. Exploring the effects of extrinsic motivation on consumer behaviors in social commerce: Revealing consumers’perceptions of social commerce benefits[J]. International Journal of Information Management,2019,45.

[13]沈炜, 徐慧,汤倩. Mysql 数据库编程技术与实例[M]. 北京:人民邮电出版社, 2005.

[14]范开勇,陈宇收.MySQL数据库性能优化研究[J].中国新通信,2019.

[15]潘震山. 网上购物系统实现技术研究[D].南京理工大学,2007.

[16]方志朋.《深入理解Spring Cloud与微服务构建(第2版)》[M].北京:人民邮电出版社,201909.

[17]周立.《Spring Cloud与Docker微服务架构实战 》[M].北京:电子工业出版社,201705.

[18]CRAIG WALLS.《Spring实战(第四版)》[M].张卫滨.北京:人民邮电出版社,201604.

[19] JavaEE开发的颠覆者: Spring Boot实战[M].汪云飞. 电子工业出版社,20221013.

[20] Java Web 项目开发案例实战[M].伊有海: 水利水电出版社, 20221015

指导教师意见:

意见从以下几个方面展开:

  1. 选题的研究价值。2、选题依据与写作提纲是否符合要求。

3、对研究思路、方法的评价。4、是否同意开题。(指导意见打印,签名指导教师务必手写)

指导教师签名:

年    月     日

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黄菊华老师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值