等差数列偶数被除2删除后的恢复问题(2018小马智行秋招计算机视觉第三道编程题)

本文持续更新地址:https://haoqchen.site/2018/11/08/arithmetic-progression-recovery/

题目描述

小P写下了一个等差数列,然后小Q将等差数列中的所有偶数都除以2(一直除以2,直到变成奇数为止)。然后小P发现等差数列被改了,现在他要还原出原来的等差数列。如果有多种可能的答案,请输出首项最小的等差数列。

输入描述

第一行一个整数N(4 <= N <= 50),表示等差数列的整数数量。

之后N行,每行一个奇数A[i],依次表示小Q除以2之后得到的奇数列,保证1 <= A[i] <= 1000.

输出描述

N行,每行一个整数,表示小P原来写下的等差数列。

示例

6
1
1
3
1
5
3

代码(没有提交系统,只在本地测试了样例)

#include <iostream>
#include <algorithm>

using namespace std;

typedef short int T;


struct ARI_PRO{
	T begin;
	T step;
};


bool is_double(T a, T b)
{
	while (a < b){
		a = a << 1;
	}
	if (a == b)
		return true;
	return false;
}

ARI_PRO get_ari_pro(T* A, T N)
{
	int i = 0;
	int temp = 0;
	ARI_PRO result;
	T step = A[1] - A[0];
	for (i = 2; i < N; ++i){//begin with odd, step by even
		if ((A[i] - A[i - 1]) != step)
			break;
	}
	if (i == N){
		result.begin = A[0];
		result.step = step;
		return result;
	}
	temp = A[0];
	step = (A[2] - A[0]) / 2;//begin with odd, step by odd
	for (i = 1; i < N; ++i){
		temp = temp + step;
		if ((i & 1) && !is_double(A[i], temp))
			break;
		else if ((!(i & 1)) && A[i] != temp)
			break;		
	}
	if (i == N){
		result.begin = A[0];
		result.step = step;
		return result;
	}
	step = (A[3] - A[1]) / 2;//begin with even, step by odd
	temp = A[1] - step;
	for (i = 0; i < N; ++i){
		if ((!(i & 1)) && !is_double(A[i], temp))
			break;
		else if ((i & 1) && A[i] != temp)
			break;
		temp = temp + step;
	}
	if (i == N){
		result.begin = A[0];
		result.step = step;
		return result;
	}
}

int main(int argc, char** argv)
{
	T N;
	cin >> N;
	if (N > 50 || N < 4)
		return 0;
	T* A = new T[N];
	T temp;
	for (int i = 0; i < N; ++i)
		cin >> A[i];
	ARI_PRO result = get_ari_pro(A, N);
	temp = result.begin;
	for (int i = 0; i < N; ++i){
		cout << temp << endl;
		temp += result.step;
	}
	delete[] A;
	return 0;
}

思路

很多人可能会想用动态规划去求解。。。这个复杂度是指数级别的~~~~

其实仔细分析一下可以知道,实际只有以下四种情况

start\step odd(奇数) even(偶数)
odd(奇数) (2)第0,2个数没变,作差/2就可以求出step,然后构建正确的等差数列。对奇数数列进行遍历,如果是双数的索引(从0开始)则判断是否相等,如是奇数索引则判断奇数数列中的数一直乘以2能否等于正确的等差数列。 (1)原来就所有数都是奇数,所以整个数列并没有改变,直接判断是否正确即可
even(偶数) (3)第1,3个数没有变,作差/2即可求出step。然后剩下步奏与(2)相似 其实偶偶的话是会退化为剩下三种的,所以不必考虑

考虑到如果有多个结果,输出首项最小的,所以安排了(1)(2)(3)的判断顺序。理论上负责度还是n*K,K很小?

不过只通过了测试用例,没上传到系统检验

发布了51 篇原创文章 · 获赞 84 · 访问量 10万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 技术黑板 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览