机器学习面试知识点总结第一弹

偏差与方差

 what?

偏差方差分别是用于衡量一个模型泛化能力的误差的两个方面;

  •  模型的偏差,指的是模型预测的期望值真实值之间的差;
  •  模型的方差,指的是模型预测的期望值预测值之间的差的平方和;
  •  偏差用于描述模型的拟合能力方差用于描述模型的稳定性

 

why? 

  • 偏差通常是做了错误的假设,或者模型的复杂度不够 (欠拟合)。
  •  方差通常是模型的复杂度太高(过拟合)造成的。

 How? 

  • High bias解决方案:Boosting、复杂模型(非线性模型、增加神经网络中的层)、更多特征
    High Variance解决方案:bagging、简化模型、降维、正则化
    

超参数调优

 超参数搜索过程:

  • 将数据集分为训练集,验证集及测试集。
  • 选择模型性能评价指标
  • 用训练集对模型进行训练
  • 在验证集上对模型进行参数进行搜索,用性能指标评价参数好坏
  • 选出最优参数

 常见超参数搜索算法:

  • 网格搜索
  • 随机搜索
  • 启发式搜索

 网格搜索

网格搜索是在所有候选的参数选择中,通过循环遍历,尝试每一种可能性,表现最好的参数就是最终的结果(暴力搜索)。

原理:在一定的区间内,通过循环遍历,尝试每一种可能性,并计算其约束函数和目标函数的值,对满足约束条件的点,逐个比较其目标函数的值,将坏的点抛弃,保留好的点,最后便得到最优解的近似解。

为了评价每次选出的参数的好坏,我们需要选择评价指标,评价指标可以根据自己的需要选择accuracy、f1-score、f-beta、percision、recall等。

同时,为了避免初始数据的划分对结果的影响,我们需要采用交叉验证的方式来减少偶然性,一般情况下网格搜索需要和交叉验证相结合使用。

随机搜索

随机搜索(random search)是利用随机数去求函数近似的最优解的方法,区别于网格搜索的暴力搜索方式。

原理:在一定的区间内,不断随机地而不是有倾向性产生随机点,并计算其约束函数和目标函数的值,对满足约束条件的点,逐个比较其目标函数的值,将坏的点抛弃,保留好的点,最后便得到最优解的近似解。

这种方法是建立在概率论的基础上,所取随机点越多,则得到最优解的概率也就越大。这种方法存在精度较差的问题,找到近似最优解的效率高于网格搜索。随机搜索一般用于粗选或普查。

启发式搜索

启发式搜索(Heuristically Search)又称为有信息搜索(Informed Search),它是利用问题拥有的启发信息来引导搜索,达到减少搜索范围、降低问题复杂度的目的,这种利用启发信息的搜索过程称为启发式搜索。

原理:在状态空间中的搜索对每一个搜索的位置进行评估,得到最好的位置,再从这个位置进行搜索直到目标。这样可以省略大量无谓的搜索路径,提高了效率。在启发式搜索中,对位置的估价是十分重要的。采用了不同的估价可以有不同的效果。

正则化、L1和L2

  •  L1正则化的模型建叫做Lasso回归,使用L2正则化的模型叫做Ridge回归
  • L1正则化是指权值向量w中各个元素的绝对值之和
  • L2正则化是指权值向量w 中各个元素的平方和然后再求平方根(可以看到Ridge回归的L2正则化项有平方符号)
  • L1和L2正则先验分别服从什么分布,L1是拉普拉斯分布,L2是高斯分布
  • L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择
    L2正则化可以防止模型过拟合(overfitting)。当然,一定程度上,L1也可以防止过拟合

机器学习中,为何要经常对数据做归一化

what

1)线性归一化:

这种归一化方法比较适用在数值比较集中的情况。这种方法有个缺陷,如果max和min不稳定,很容易使得归一化结果不稳定,使得后续使用效果也不稳定。实际使用中可以用经验常量值来替代max和min。
2)标准差标准化
经过处理的数据符合标准正态分布,即均值为0,标准差为1,其转化函数为:

 

其中μ为所有样本数据的均值,σ为所有样本数据的标准差。

WHY 

为什么要归一化? 

 1)归一化后加快了梯度下降求最优解的速度;2)归一化有可能提高精度。

 1.归一化为什么能提高梯度下降法求解最优解的速度?

 当使用梯度下降法寻求最优解时,很有可能走“之字型”路线(垂直等高线走),从而导致需要迭代很多次才能收敛;

 2.归一化有可能提高精度

一些分类器需要计算样本之间的距离(如欧氏距离),例如KNN。如果一个特征值域范围非常大,那么距离计算就主要取决于这个特征,从而与实际情况相悖(比如这时实际情况是值域范围小的特征更重要)。

 Covariance shift 

在模型训练的时候我们一般都会做样本归一化(样本归一化作用会在下面文章介绍),在往多层神经网络传播时,前面层参数的改变,使得后面层的输入分布发生改变时,就叫Internal covariance shift。这会导致:其一,增加模型训练时间,因为样本分布变了,要调整 参数适应这种分布;其二:在MachineLN之激活函数文章中提到的使用sigmoid函数,梯度消失的问题;

LR如何解决低维不可分

特征映射:通过特征变换的方式把低维空间转换到高维空间,而在低维空间不可分的数据,到高维空间中线性可分的几率会高一些。

哪些机器学习算法不需要做归一化处理?

 通过梯度下降法求解的模型一般都是需要归一化的,比如线性回归、logistic回归、KNN、SVM、神经网络等模型。

但树形模型不需要归一化,因为它们不关心变量的值,而是关心变量的分布和变量之间的条件概率,
因为数值缩放不影响分裂点位置,对树模型的结构不造成影响。
如决策树、随机森林(Random Forest)。

 几种参数估计的方法最大似然估计(MLE),最大后验概率估计(MAP),贝叶斯估计

SVM

 支持向量机,是一种二分类模型,其基本定义为特征空间上的间隔最大的线性分类器,其学习策略是间隔最大化,最终可转换为一个凸二次规划问题的求解。

什么是分离超平面

logistics回归中的决策边界,在SVM中我们叫分离超平面。 

cmd-markdown-logo

问?为什么上面的图片仅仅是一条直线,我们却叫它一个超平面?

答:上面只是二维超平面的一个例子,但实际上SVM在任意维度有效。

超平面是平面的一般化

 什么是最优分离超平面?

  • 在一维的平面中,它是点
  • 在二维中,它是线
  • 在三维中,它是面
  • 在更高的维度中,我们可以称之为超平面

选择一个尽可能离所有数据点都远的分离超平面

cmd-markdown-logo

cmd-markdown-logo

SVM就是要找到一个最优超平面保证:

  • 正确的对训练数据进行分类。
  • 对未知数据也要进行很好的分类。

 cmd-markdown-logo

Margin就是最优分类超平面的间隔。

给定一个特定的超平面,我们可以计算出这个超平面与和它最接近的数据点之间的距离。间隔(Margin)就是二倍的这个距离。

函数间隔Functional margin与几何间隔Geometrical margin 

函数间隔

超平面w*x + b = 0确定的情况下,|w*x+b|它表示点x到超平面的距离,通过判断w*x+b的符号类标记y的符号是否一致可以判断分类是否正确,所以(y*(w*x+b))的正负形可以判断分类是否正确。

现在把w和b进行一下归一化,即用w/||w||和b/||w||分别代替原来的w和b,那么间隔就可以写成

clip_image002[28]

这个公式是不是看上去有点眼熟?没错,这不就是解析几何中点xi到直线g(x)=0的距离公式嘛!(推广一下,是到超平面g(x)=0的距离, g(x)=0就是上节中提到的分类超平面)

小Tips:||w||是什么符号?||w||叫做向量w的范数,范数是对向量长度的一种度量。我们常说的向量长度其实指的是它的2-范数,范数最一般的表示形式为p-范数,可以写成如下表达式

    向量w=(w1, w2, w3,…… wn)

它的p-范数为

clip_image004[10]

 

 

几何间隔

当用归一化的w和b代替原值之后的间隔有一个专门的名称,叫做几何间隔,几何间隔所表示的正是点到超平面的欧氏距离

我们下面就简称几何间隔为“距离”。

间隔:δ=y(wx+b)=|g(x)|

几何间隔:clip_image002

下面这张图更加直观的展示出了几何间隔的现实含义:

image

最大几何间隔

注意到几何间隔与||w||是成反比的,因此最大化几何间隔与最小化||w||完全是一回事。而我们常用的方法并不是固定||w||的大小而寻求最大几何间隔,而是固定间隔(例如固定为1),寻找最小的||w||。

我们想寻找最小的||w||这件事,就可以用下面的式子表示:

clip_image002[4]

但实际上对于这个目标,我们常常使用另一个完全等价的目标函数来代替,那就是:

clip_image002[6](式1)

不难看出当||w||2达到最小时,||w||也达到最小,反之亦然(前提当然是||w||描述的是向量的长度,因而是非负的)。

约束条件和最大间隔

如果直接来解这个求最小值问题,很容易看出当||w||=0的时候就得到了目标函数的最小值。但是你也会发现,无论你给什么样的数据,都是这个解!反映在图中,就是H1与H2两条直线间的距离无限大,这个时候,所有的样本点(无论正样本还是负样本)都跑到了H1和H2中间,而我们原本的意图是,H1右侧的被分为正类,H2 左侧的被分为负类,位于两类中间的样本则拒绝分类(拒绝分类的另一种理解是分给哪一类都有道理,因而分给哪一类也都没有道理)。这下可好,所有样本点都进入了无法分类的灰色地带。

造成这种结果的原因是在描述问题的时候只考虑了目标,而没有加入约束条件,约束条件就是在求解过程中必须满足的条件,体现在我们的问题中就是样本点必须在H1或H2的某一侧(或者至少在H1和H2上),而不能跑到两者中间。我们前文提到过把间隔固定为1,这是指把所有样本点中间隔最小的那一点的间隔定为1(这也是集合的间隔的定义,有点绕嘴),也就意味着集合中的其他点间隔都不会小于1,按照间隔的定义,满足这些条件就相当于让下面的式子总是成立:

 

 yi[(w·xi)+b]≥1 (i=1,2,…,l) (l是总的样本数)

但我们常常习惯让式子的值和0比较,因而经常用变换过的形式:

    yi[(w·xi)+b]-1≥0 (i=1,2,…,l) (l是总的样本数)

因此我们的两类分类问题也被我们转化成了它的数学形式,一个带约束的最小值的问题:

clip_image002[10]

 

从最一般的定义上说,一个求最小值的问题就是一个优化问题(也叫寻优问题,更文绉绉的叫法是规划——Programming),它同样由两部分组成,目标函数和约束条件,可以用下面的式子表示:

clip_image002(式1)

约束条件用函数c来表示,就是constrain的意思啦。你可以看出一共有p+q个约束条件,其中p个是不等式约束,q个等式约束。

关于这个式子可以这样来理解:式中的x是自变量,但不限定它的维数必须为1(视乎你解决的问题空间维数,对我们的文本分类来说,那可是成千上万啊)。要求f(x)在哪一点上取得最小值(反倒不太关心这个最小值到底是多少,关键是哪一点),但不是在整个空间里找,而是在约束条件所划定的一个有限的空间里找,这个有限的空间就是优化理论里所说的可行域。注意可行域中的每一个点都要求满足所有p+q个条件,而不是满足其中一条或几条就可以(切记,要满足每个约束),同时可行域边界上的点有一个额外好的特性,它们可以使不等式约束取得等号!而边界内的点不行。

凸集

       关于可行域还有个概念不得不提,那就是凸集,凸集是指有这么一个点的集合,其中任取两个点连一条直线,这条线上的点仍然在这个集合内部,因此说“凸”是很形象的(一个反例是,二维平面上,一个月牙形的区域就不是凸集,你随便就可以找到两个点违反了刚才的规定)。

回头再来看我们线性分类器问题的描述,可以看出更多的东西。

 clip_image002[5]

 在这个问题中,自变量就是w,而目标函数是w的二次函数,所有的约束条件都是w的线性函数(哎,千万不要把xi当成变量,它代表样本,是已知的),这种规划问题有个很有名气的称呼——二次规划(Quadratic Programming,QP),而且可以更进一步的说,由于它的可行域是一个凸集,因此它是一个凸二次规划。

因为我们实际上并不知道该怎么解一个带约束的优化问题。如果你仔细回忆一下高等数学的知识,会记得我们可以轻松的解一个不带任何约束的优化问题(实际上就是当年背得烂熟的函数求极值嘛,求导再找0点呗,谁不会啊?笑),我们甚至还会解一个只带等式约束的优化问题,也是背得烂熟的,求条件极值,记得么,通过添加拉格朗日乘子,构造拉格朗日函数,来把这个问题转化为无约束的优化问题云云(如果你一时没想通,我提醒一下,构造出的拉格朗日函数就是转化之后的问题形式,它显然没有带任何条件)。

问:如果只带等式约束的问题可以转化为无约束的问题而得以求解,那么可不可以把带不等式约束的问题向只带等式约束的问题转化一下而得以求解呢?

样本确定了w,用数学的语言描述,就是w可以表示为样本的某种组合:

w=α1x1+α2x2+…+αnxn

式子中的αi是一个一个的数(在严格的证明过程中,这些α被称为拉格朗日乘子),而xi是样本点,因而是向量,n就是总样本点的个数。为了方便描述,以下开始严格区别数字与向量的乘积和向量间的乘积,我会用α1x1表示数字和向量的乘积,而用<x1,x2>表示向量x1,x2的内积(也叫点积,注意与向量叉积的区别)。因此g(x)的表达式严格的形式应该是:

g(x)=<w,x>+b

       但是上面的式子还不够好,你回头看看图中正样本和负样本的位置,想像一下,我不动所有点的位置,而只是把其中一个正样本点定为负样本点(也就是把一个点的形状从圆形变为方形),结果怎么样?三条直线都必须移动(因为对这三条直线的要求是必须把方形和圆形的点正确分开)!这说明w不仅跟样本点的位置有关,还跟样本的类别有关(也就是和样本的“标签”有关)。因此用下面这个式子表示才算完整:

w=α1y1x1+α2y2x2+…+αnynxn (式1)

        其中的yi就是第i个样本的标签,它等于1或者-1。其实以上式子的那一堆拉格朗日乘子中,只有很少的一部分不等于0(不等于0才对w起决定作用),这部分不等于0的拉格朗日乘子后面所乘的样本点,其实都落在H1和H2上,也正是这部分样本(而不需要全部样本)唯一的确定了分类函数,当然,更严格的说,这些样本的一部分就可以确定,因为例如确定一条直线,只需要两个点就可以,即便有三五个都落在上面,我们也不是全都需要。这部分我们真正需要的样本点,就叫做支持(撑)向量!(名字还挺形象吧,他们“撑”起了分界线)

式子也可以用求和符号简写一下:

 

clip_image002

因此原来的g(x)表达式可以写为:

clip_image002[4]

注意式子中x才是变量,也就是你要分类哪篇文档,就把该文档的向量表示代入到 x的位置,而所有的xi统统都是已知的样本。还注意到式子中只有xi和x是向量,因此一部分可以从内积符号中拿出来,得到g(x)的式子为:

clip_image002[6]

发现了什么?w不见啦!从求w变成了求α。

以这样的形式描述问题以后,我们的优化问题少了很大一部分不等式约束(记得这是我们解不了极值问题的万恶之源)。

 为何需要核函数

如果有这样的函数,那么当给了一个低维空间的输入x以后,

g(x)=K(w,x)+b

f(x’)=<w’,x’>+b

这两个函数的计算结果就完全一样,我们也就用不着费力找那个映射关系,直接拿低维的输入往g(x)里面代就可以了(再次提醒,这回的g(x)就不是线性函数啦,因为你不能保证K(w,x)这个表达式里的x次数不高于1哦)。

万幸的是,这样的K(w,x)确实存在(发现凡是我们人类能解决的问题,大都是巧得不能再巧,特殊得不能再特殊的问题,总是恰好有些能投机取巧的地方才能解决,由此感到人类的渺小),它被称作核函数(核,kernel),而且还不止一个,事实上,只要是满足了Mercer条件的函数,都可以作为核函数。核函数的基本作用就是接受两个低维空间里的向量,能够计算出经过某个变换后在高维空间里的向量内积值。

回想我们上节说的求一个线性分类器,它的形式应该是:

clip_image002[9]

现在这个就是高维空间里的线性函数(为了区别低维和高维空间里的函数和向量,我改了函数的名字,并且给w和x都加上了 ’),我们就可以用一个低维空间里的函数(再一次的,这个低维空间里的函数就不再是线性的啦)来代替,

clip_image002[11]

又发现什么了?f(x’) 和g(x)里的α,y,b全都是一样一样的!这就是说,尽管给的问题是线性不可分的,但是我们就硬当它是线性问题来求解,只不过求解过程中,凡是要求内积的时候就用你选定的核函数来算。这样求出来的α再和你选定的核函数一组合,就得到分类器啦!

 松弛变量

现在我们已经把一个本来线性不可分的文本分类问题,通过映射到高维空间而变成了线性可分的。就像下图这样:

 

image

圆形和方形的点各有成千上万个(毕竟,这就是我们训练集中文档的数量嘛,当然很大了)。现在想象我们有另一个训练集,只比原先这个训练集多了一篇文章,映射到高维空间以后(当然,也使用了相同的核函数),也就多了一个样本点,但是这个样本的位置是这样的:

image

就是图中黄色那个点,它是方形的,因而它是负类的一个样本,这单独的一个样本,使得原本线性可分的问题变成了线性不可分的。这样类似的问题(仅有少数点线性不可分)叫做“近似线性可分”的问题。

以我们人类的常识来判断,说有一万个点都符合某种规律(因而线性可分),有一个点不符合,那这一个点是否就代表了分类规则中我们没有考虑到的方面呢(因而规则应该为它而做出修改)?

其实我们会觉得,更有可能的是,这个样本点压根就是错误,是噪声,是提供训练集的同学人工分类时一打瞌睡错放进去的。所以我们会简单的忽略这个样本点,仍然使用原来的分类器,其效果丝毫不受影响。

但这种对噪声的容错性是人的思维带来的,我们的程序可没有。由于我们原本的优化问题的表达式中,确实要考虑所有的样本点(不能忽略某一个,因为程序它怎么知道该忽略哪一个呢?),在此基础上寻找正负类之间的最大几何间隔,而几何间隔本身代表的是距离,是非负的,像上面这种有噪声的情况会使得整个问题无解。这种解法其实也叫做“硬间隔”分类法,因为他硬性的要求所有样本点都满足和分类平面间的距离必须大于某个值。

因此由上面的例子中也可以看出,硬间隔的分类法其结果容易受少数点的控制,这是很危险的(尽管有句话说真理总是掌握在少数人手中,但那不过是那一小撮人聊以自慰的词句罢了,咱还是得民主)。

但解决方法也很明显,就是仿照人的思路,允许一些点到分类平面的距离不满足原先的要求。由于不同的训练集各点的间距尺度不太一样,因此用间隔(而不是几何间隔)来衡量有利于我们表达形式的简洁。我们原先对样本点的要求是:

 

clip_image002

意思是说离分类面最近的样本点函数间隔也要比1大。如果要引入容错性,就给1这个硬性的阈值加一个松弛变量,即允许

clip_image002[5]

因为松弛变量是非负的,因此最终的结果是要求间隔可以比1小。但是当某些点出现这种间隔比1小的情况时(这些点也叫离群点),意味着我们放弃了对这些点的精确分类,而这对我们的分类器来说是种损失。但是放弃这些点也带来了好处,那就是使分类面不必向这些点的方向移动,因而可以得到更大的几何间隔(在低维空间看来,分类边界也更平滑)。显然我们必须权衡这种损失和好处。好处很明显,我们得到的分类间隔越大,好处就越多。回顾我们原始的硬间隔分类对应的优化问题:

clip_image002[7]

||w||2就是我们的目标函数(当然系数可有可无),希望它越小越好,因而损失就必然是一个能使之变大的量(能使它变小就不叫损失了,我们本来就希望目标函数值越小越好)。那如何来衡量损失,有两种常用的方式,有人喜欢用

 clip_image002[9]

而有人喜欢用

clip_image002[11]

其中l都是样本的数目。两种方法没有大的区别。如果选择了第一种,得到的方法的就叫做二阶软间隔分类器,第二种就叫做一阶软间隔分类器。把损失加入到目标函数里的时候,就需要一个惩罚因子(cost,也就是libSVM的诸多参数中的C),原来的优化问题就变成了下面这样:

clip_image002[13]

这个式子有这么几点要注意:

一是并非所有的样本点都有一个松弛变量与其对应。实际上只有“离群点”才有,或者也可以这么看,所有没离群的点松弛变量都等于0(对负类来说,离群点就是在前面图中,跑到H2右侧的那些负样本点,对正类来说,就是跑到H1左侧的那些正样本点)。

二是松弛变量的值实际上标示出了对应的点到底离群有多远,值越大,点就越远。

三是惩罚因子C决定了你有多重视离群点带来的损失,显然当所有离群点的松弛变量的和一定时,你定的C越大,对目标函数的损失也越大,此时就暗示着你非常不愿意放弃这些离群点,最极端的情况是你把C定为无限大,这样只要稍有一个点离群,目标函数的值马上变成无限大,马上让问题变成无解,这就退化成了硬间隔问题。

四是惩罚因子C不是一个变量,整个优化问题在解的时候,C是一个你必须事先指定的值,指定这个值以后,解一下,得到一个分类器,然后用测试数据看看结果怎么样,如果不够好,换一个C的值,再解一次优化问题,得到另一个分类器,再看看效果,如此就是一个参数寻优的过程,但这和优化问题本身决不是一回事,优化问题在解的过程中,C一直是定值,要记住。

五是尽管加了松弛变量这么一说,但这个优化问题仍然是一个优化问题(汗,这不废话么),解它的过程比起原始的硬间隔问题来说,没有任何更加特殊的地方。

 其中||w||为w的二阶范数(范数是一个类似于模的表示长度的概念),是单位向量(一个向量除以它的模称之为单位向量)。

  又由于x0 是超平面上的点,满足 f(x0)=0,代入超平面的方程,可得,即。

    随即让此式的两边同时乘以,再根据和,即可算出γ: 

  为了得到的绝对值,令乘上对应的类别 y,即可得出几何间隔(用表示)的定义:

    从上述函数间隔和几何间隔的定义可以看出:几何间隔就是函数间隔除以||w||,而且函数间隔y*(wx+b) = y*f(x)实际上就是|f(x)|,只是人为定义的一个间隔度量,而几何间隔|f(x)|/||w||才是直观上的点到超平面的距离。

接下来要说的东西其实不是松弛变量本身,但由于是为了使用松弛变量才引入的,因此放在这里也算合适,那就是惩罚因子C。回头看一眼引入了松弛变量以后的优化问题:

clip_image002

注意其中C的位置,也可以回想一下C所起的作用(表征你有多么重视离群点,C越大越重视,越不想丢掉它们)。这个式子是以前做SVM的人写的,大家也就这么用,但没有任何规定说必须对所有的松弛变量都使用同一个惩罚因子,我们完全可以给每一个离群点都使用不同的C,这时就意味着你对每个样本的重视程度都不一样,有些样本丢了也就丢了,错了也就错了,这些就给一个比较小的C;而有些样本很重要,决不能分类错误(比如中央下达的文件啥的,笑),就给一个很大的C。

当然实际使用的时候并没有这么极端,但一种很常用的变形可以用来解决分类问题中样本的“偏斜”问题。

先来说说样本的偏斜问题,也叫数据集偏斜(unbalanced),它指的是参与分类的两个类别(也可以指多个类别)样本数量差异很大。比如说正类有10,000个样本,而负类只给了100个,这会引起的问题显而易见,可以看看下面的图:

image

 

方形的点是负类。H,H1,H2是根据给的样本算出来的分类面,由于负类的样本很少很少,所以有一些本来是负类的样本点没有提供,比如图中两个灰色的方形点,如果这两个点有提供的话,那算出来的分类面应该是H’,H2’和H1,他们显然和之前的结果有出入,实际上负类给的样本点越多,就越容易出现在灰色点附近的点,我们算出的结果也就越接近于真实的分类面。但现在由于偏斜的现象存在,使得数量多的正类可以把分类面向负类的方向“推”,因而影响了结果的准确性。

对付数据集偏斜问题的方法之一就是在惩罚因子上作文章,想必大家也猜到了,那就是给样本数量少的负类更大的惩罚因子,表示我们重视这部分样本(本来数量就少,再抛弃一些,那人家负类还活不活了),因此我们的目标函数中因松弛变量而损失的部分就变成了:

 

clip_image002[5]

其中i=1…p都是正样本,j=p+1…p+q都是负样本。libSVM这个算法包在解决偏斜问题的时候用的就是这种方法。

那C+和C-怎么确定呢?它们的大小是试出来的(参数调优),但是他们的比例可以有些方法来确定。咱们先假定说C+是5这么大,那确定C-的一个很直观的方法就是使用两类样本数的比来算,对应到刚才举的例子,C-就可以定为500这么大(因为10,000:100=100:1嘛)。

但是这样并不够好,回看刚才的图,你会发现正类之所以可以“欺负”负类,其实并不是因为负类样本少,真实的原因是负类的样本分布的不够广(没扩充到负类本应该有的区域)。说一个具体点的例子,现在想给政治类和体育类的文章做分类,政治类文章很多,而体育类只提供了几篇关于篮球的文章,这时分类会明显偏向于政治类,如果要给体育类文章增加样本,但增加的样本仍然全都是关于篮球的(也就是说,没有足球,排球,赛车,游泳等等),那结果会怎样呢?虽然体育类文章在数量上可以达到与政治类一样多,但过于集中了,结果仍会偏向于政治类!所以给C+和C-确定比例更好的方法应该是衡量他们分布的程度。比如可以算算他们在空间中占据了多大的体积,例如给负类找一个超球——就是高维空间里的球啦——它可以包含所有负类的样本,再给正类找一个,比比两个球的半径,就可以大致确定分布的情况。显然半径大的分布就比较广,就给小一点的惩罚因子。

 

支持向量和最大几何间隔

 根据上面的证明,超平面mn上的数据点到最大几何间隔分离超平面l的距离最近而且等于d,也就是说如果LSCOP问题的最优解为\mathbf{w^*},b^*,那么超平面mn上的数据点\mathbf{x_i}正好使不等式约束条件取等号,即y_i(\mathbf{w^*}^T\mathbf{x}_i+b^*)-1=0。这些点称之为支持向量,\mathbf{w^*}^T \mathbf{x}+b^*=1\mathbf{w^*}^T \mathbf{x}+b^*=-1称之为支持超平面。所以支持向量分布在支撑超平面上。如图:

如果去掉图中支持向量以外的数据点,你会发现,最大几何间隔分离超平面并不会变。实际上,它是由支持向量决定的,这也是支持向量机名字的由来。

 

最大间隔分类器Maximum Margin Classifier的定义

 

几何间隔的定义,可知:如果令函数间隔等于1(之所以令等于1,是为了方便推导和优化,且这样做对目标函数的优化没有影响,至于为什么,请见本文评论下第42楼回复),则有 = 1 / ||w||且,从而上述目标函数转化成了

    相当于在相应的约束条件下,最大化这个1/||w||值,而1/||w||便是几何间隔。   

   

于是最大间隔分类器(maximum margin classifier)的目标函数可以定义为:

    同时需满足一些条件,根据间隔的定义,有

    其中,s.t.,即subject to的意思,它导出的是约束条件。

    回顾下几何间隔的定义,可知:如果令函数间隔等于1(之所以令等于1,是为了方便推导和优化,且这样做对目标函数的优化没有影响,至于为什么,请见本文评论下第42楼回复),则有 = 1 / ||w||且,从而上述目标函数转化成了

    相当于在相应的约束条件下,最大化这个1/||w||值,而1/||w||便是几何间隔。   

    如下图所示,中间的实线便是寻找到的最优超平面(Optimal Hyper Plane),其到两条虚线边界的距离相等,这个距离便是几何间隔,两条虚线间隔边界之间的距离等于2,而虚线间隔边界上的点则是支持向量。由于这些支持向量刚好在虚线间隔边界上,所以它们满足(还记得我们把 functional margin 定为 1 了吗?上节中:处于方便推导和优化的目的,我们可以令=1),而对于所有不是支持向量的点,则显然有

从线性可分到线性不可分

 接着考虑之前得到的目标函数:

   由于求的最大值相当于求的最小值,所以上述目标函数等价于(w由分母变成分子,从而也有原来的max问题变为min问题,很明显,两者问题等价):

1.1、从原始问题到对偶问题的求解

 

接着考虑之前得到的目标函数:

     由于求的最大值相当于求的最小值,所以上述目标函数等价于(w由分母变成分子,从而也有原来的max问题变为min问题,很明显,两者问题等价):

 拉格朗日橙子发(高数求极值):

通过给每一个约束条件加上一个拉格朗日乘子(Lagrange multiplier),定义拉格朗日函数(通过拉格朗日函数将约束条件融合到目标函数里去,从而只用一个函数表达式便能清楚的表达出我们的问题):

 KKT条件

 分别对w和b求偏导,分别得到两个条件(由于对偶性质)

等价关系

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值