推荐系统评测指标

推荐系统的好坏可通过准确度、覆盖度、新颖度、惊喜度、信任度等指标评测。离线实验、用户调查和在线实验是评估的主要方法。用户满意度、预测准确度(如RMSE和MAE)、覆盖率、多样性、新颖性和惊喜度共同决定了推荐系统的性能。
摘要由CSDN通过智能技术生成

0前言
什么才是好的推荐系统?这是推荐系统评测的需要解决的首要问题。那我们怎么去判断一个系统的好坏呢?我们认为一个好的推荐系统不仅仅能够准确的预测用户的行为,而且还能够扩展用户的视野,帮助用户发现那些他们可能会感兴趣但却不那么容易发现的东西。
评价一个推荐系统的好坏一般有几个不同的指标,这些指标包括:准确度、覆盖度、新颖度、惊喜度、信任度等。这些指标中,有些是可以离线计算,有的只能在线计算,有些只能通过用户反馈才能得到。下面将会依次介绍这些指标。
1推荐系统实验方法
介绍推荐系统的指标前,先看下计算和获得这些指标的主要实验方法。一般有三种:离线实验、用户调查和在线实验。

1.1离线实验:
(1)通过日志系统获得用户行为数据,并按照一定格式生成一个标准的数据集
(2)将数据集按照一个的规则分为训练集和测试集
(3)在训练集上训练用户兴趣模型,在测试集上进行预测
(4)通过事先定义的离线指标评测算法在测试集上的预测结果
1.2用户调查:
用户调查需要有一些真实的用户,让他们在需要测试的推荐系统上完成一些任务,在他们完成任务时,我们需要观察和记录用户的行为,并让他们回答一些问题。最后,分析他们的行为和答案了解测试系统的性能。
1.3在线实验:
在完成离线实验和必要的用户调查后,可以将推荐系统上线做AB测试,将它和旧的算法进行

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值