论文题目:Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
论文下载:点此下载原文
论文重点:低分辨率图像使用亚像素卷积产生高分辨率图像
低分辨率图像大小:H × W × C
生成高分辨率图像大小为:rH × rW × C,r是缩放倍数
举个栗子:原始图像大小为 3 × 20 × 20(顺序是 C H W,3是通道数),放大2倍后生成图像大小为 3 × 40 × 40。
首先,3 × 20 × 20的图像通过 3 × nl × kl × kl的卷积核后,产生的特征图大小为 nl × 20 × 20;
然后,通过 nl-1 × nl × kl × kl的卷积核后,产生的特征图大小为 nl-1 × 20 × 20;
接着,通过 r2 × nl-1 × kl × kl(r2为r的平方,此处r=2)的卷积核后,产生的特征图大小为 r2 × 20 × 20;
最后,亚像素卷积,将通道数变为原来的3通道,并将H、W均扩大r倍,并产生的特征图大小为 3 × 40 × 40。