亚像素卷积Sub-Pixel Convolutional

论文题目:Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network

论文下载:点此下载原文

论文重点:低分辨率图像使用亚像素卷积产生高分辨率图像

在这里插入图片描述
低分辨率图像大小:H × W × C
生成高分辨率图像大小为:rH × rW × C,r是缩放倍数

举个栗子:原始图像大小为 3 × 20 × 20(顺序是 C H W,3是通道数),放大2倍后生成图像大小为 3 × 40 × 40。

首先,3 × 20 × 20的图像通过 3 × nl × kl × kl的卷积核后,产生的特征图大小为 nl × 20 × 20;
然后,通过 nl-1 × nl × kl × kl的卷积核后,产生的特征图大小为 nl-1 × 20 × 20;
接着,通过 r2 × nl-1 × kl × kl(r2为r的平方,此处r=2)的卷积核后,产生的特征图大小为 r2 × 20 × 20;
最后,亚像素卷积,将通道数变为原来的3通道,并将H、W均扩大r倍,并产生的特征图大小为 3 × 40 × 40。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值