ImportError: No module named python.NormlizedMSE

1. 直接使用train.sh启动训练过程,其实也是可以的

#!/usr/bin/env sh
set -e
./build/tools/caffe train --solver=/***/adam_solver.prototxt --gpu=1,2,3

一般会报错:ImportError: No module named python.NormlizedMSE

 

可能会报错,解决方案

https://blog.csdn.net/bingqingsuimeng/article/details/79907967

 

2. 解决方案,使用python脚本启动训练过程:

  • 将自定义的python层放到caffe_root/python下
  • 重新编译pycaffe: make pycaffe

3. 具体操作:

solver.py

import sys
sys.path.append('~/work/caffe_master/python') # for  import caffe
sys.path.append('~/work/Myproject/train/') # for python layer, 这里指明python的呼叫路径
import caffe
caffe.set_device(1)
caffe.set_mode_gpu()

solver=caffe.SGDSolver('~/work/Myproject/adam_solver.prototxt')
solver.solve()

prototxt

layer {
  type: 'Python'
  name: 'loss'
  top: 'loss'
  bottom: 'Dense3'
  bottom: 'landmarks'
  python_param {
    # 自定义层的名字,注意,这里一定是和上面solver中的路径相配合的
    module: 'NormlizedMSE'
    # the layer name -- the class name in the module
    layer: 'NormlizedMSE'
  }
  # set loss weight so Caffe knows this is a loss layer.
  # since PythonLayer inherits directly from Layer, this isn't automatically
  # known to Caffe
  loss_weight: 1
}

这里是重点:

NormlizedMSE.py 在路径’~/work/Myproject/train/'下,也就是用于训练的python脚本中呼叫的路径。

 

参考链接:https://www.itread01.com/content/1548369193.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值